Department of Bioinformatics and Applied Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran , d.gholami@ausmt.ac.ir
Abstract: (138 Views)
Background:Non-obstructive azoospermia is one of the most important causes of male infertility. Its main characteristic is the frequent absence of sperm in the semen or a low number of sperm, and it is not fully developed. This study aims to find key genes in non-obstructive azoospermia patients and their role that may affect the biomarkers related to spermatogenesis. Methods:Using transcriptome and sequencing datasets in the gene expression database (GEO), hub genes related to spermatogenesis were identified. Based on them, gene functional enrichment analysis (GO), gene and genome enrichment pathway analysis (KEGG), protein-protein interaction (PPI) network analysis, cellular analysis, and temporal analysis identified a total of 50 differentially expressed genes, of which, 5 genes related to spermatogenesis (CDC20, BUB1B, CCNB1, CCNA2 and PLK1) have been reported, and the expression of these 5 hub genes was different in each type of sperm cells. Results:The analysis results of the 5 hub genes showed that these hub genes were expressed in primary spermatocytes, round spermatids, long spermatids, and sperm during spermatogenesis. PLK1 expression was at the highest level. During the differentiation of spermatogonia into primary spermatocytes, CDC20 expression was nearly undetectable, whereas the expression levels of BUB1B, CCNB1, and CCNA2 were elevated compared to that of BUB1B. Conclusion:The research revealed that these five hub genes exhibit distinct differences in sperm development and may play a crucial role in the differentiation of various sperm cells. This result is crucial for elucidating the pathogenic mechanism of non-obstructive azoospermia and for further research.
1. Gifford JH. The role of WNT signaling in adult ovarian folliculogenesis. Reproduction. 2015;150(4):R137-48. [DOI:10.1530/REP-14-0685]
2. Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54(9):633-639. [DOI:10.1136/jmedgenet-2017-104514]
3. Wosnitzer M, Goldstein M, Hardy MP. Review of azoospermia. Spermatogenesis. 2014;4(1):e28218. [DOI:10.4161/spmg.28218]
4. Kohn TP, Pastuszak AW. Non-obstructive azoospermia and shortened leukocyte telomere length: further evidence linking poor health and infertility. Fertil Steril. 2018;110(4):629-630. [DOI:10.1016/j.fertnstert.2018.06.013]
5. Vij SC, Sabanegh Jr E, Agarwal A. Biological therapy for non-obstructive azoospermia. Expert Opin Biol Ther. 2018;18(1):19-23. [DOI:10.1080/14712598.2018.1380622]
6. Silber SJ, Van Steirteghem A, Nagy Z, Liu J, Tournaye H, Devroey P. Normal pregnancies resulting from testicular sperm extraction and intracytoplasmic sperm injection for azoospermia due to maturation arrest. Fertil Steril. 1996;66(1):110-117. [DOI:10.1016/S0015-0282(16)58396-4]
7. Song J, Gu L, Ren X, Liu Y, Qian K, Lan R, et al. Prediction model for clinical pregnancy for ICSI after surgical sperm retrieval in different types of azoospermia. Hum Reprod. 2020;35(9):1972-1982. [DOI:10.1093/humrep/deaa163]
8. Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, et al. Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway. Front Cell Dev Biol. 2020;8:574-602. [DOI:10.3389/fcell.2020.602574]
9. Dong M, Li H, Zhang X, Tan J. Weighted correlation gene network analysis reveals new potential mechanisms and biomarkers in non-obstructive azoospermia. Front Genet. 2021;12:133-617. [DOI:10.3389/fgene.2021.617133]
10. Zhong Y, Zhao J, Deng H, Wu Y, Zhu L, Yang M, et al. Integrative bioinformatics analysis to identify novel biomarkers associated with non-obstructive azoospermia. Front Immunol. 2023;14:1088-1261. [DOI:10.3389/fimmu.2023.1088261]
11. Qi Y, Wu Y, Pang K, Cao Y, Li H, Qiao Y, et al. Profiling of circulating extracellular vesicle microRNAs reveals diagnostic potential and pathways in non-obstructive and obstructive azoospermia. Biol Reprod. 2024;111(6):1297-1310. [DOI:10.1093/biolre/ioae130]
12. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846-1847. [DOI:10.1093/bioinformatics/btm254]
13. Core Team R. R: A Language and Environment for Statistical Computing. Vienna. R Foundation for Statistical Computing; 2020.
14. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. [DOI:10.1093/nar/gkv007]
15. Xie Z, Bailey A, Kuleshov MV, Clarke DJ, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1(3):e90. [DOI:10.1002/cpz1.90]
17. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-46. [DOI:10.1093/nar/gkac1000]
18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. [DOI:10.1101/gr.1239303]
19. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:1-7. [DOI:10.1186/1752-0509-8-S4-S11]
20. Neto FTL, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. In: Seminars in Cell & Developmental Biology. Amsterdam: Elsevier; 2016. [DOI:10.1016/j.semcdb.2016.04.009]
21. La HM, Hobbs RM. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci. 2019;76:4071-4102. [DOI:10.1007/s00018-019-03201-6]
22. Singh V, Jaiswal D, Singh K, Trivedi S, Agrawal NK, Gupta G, et al. Azoospermic infertility is associated with altered expression of DNA repair genes. DNA Repair. 2019;75:39-47. [DOI:10.1016/j.dnarep.2019.01.006]
23. Law NC, Oatley MJ, Oatley JM. Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogenic lineage. Nat Commun. 2019;10(1):27-87. [DOI:10.1038/s41467-019-10596-0]
24. Goto C, Tamura K, Nishimaki S, Maruyama D, Hara-Nishimura I. The nuclear envelope protein KAKU4 determines the migration order of the vegetative nucleus and sperm cells in pollen tubes. J Exp Bot. 2020;71(20):6273-6281. [DOI:10.1093/jxb/eraa367]
25. Kavarthapu R, Anbazhagan R, Sharma AK, Shiloach J, Dufau ML. Linking phospho-gonadotropin regulated testicular RNA helicase (GRTH/DDX25) to histone ubiquitination and acetylation essential for spermatid development during spermiogenesis. Front Cell Dev Biol. 2020;8:31-40. [DOI:10.3389/fcell.2020.00310]
26. Rodríguez-Casuriaga R, Geisinger A. Contributions of flow cytometry to the molecular study of spermatogenesis in mammals. Int J Mol Sci. 2021;22(3):11-51. [DOI:10.3390/ijms22031151]
27. Kanakkanthara A, Jeganathan KB, Limzerwala JF, Baker DJ, Hamada M, Nam HJ, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353(6307):1549-52. [DOI:10.1126/science.aaf7463]
28. Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular regulation of the spindle assembly checkpoint by kinases and phosphatases. Int Rev Cell Mol Biol. 2017;328:105-161. [DOI:10.1016/bs.ircmb.2016.08.004]
29. Lin YM, Teng YN, Chung CL, Tsai WC, Lin YH, Lin JSN, et al. Decreased mRNA transcripts of M-phase promoting factor and its regulators in the testes of infertile men. Hum Reprod. 2006;21(1):138-144. [DOI:10.1093/humrep/dei285]
30. Ma Q, Liu Y, Shang L, Yu J, Qu Q. The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma. Oncol Rep. 2017;38(6):3367-3375. [DOI:10.3892/or.2017.6032]
31. He H, Yu F, Shen W, Chen K, Zhang L, Lou S, et al. The novel key genes of non-obstructive azoospermia affect spermatogenesis: transcriptomic analysis based on RNA-Seq and scRNA-Seq data. Front Genet. 2021;12:608-629. [DOI:10.3389/fgene.2021.608629]
32. Shen Y, Wu X, Li Q, Huang X, Wang J, Zhao L, et al. Identification and potential value of candidate genes in patients with non-obstructive azoospermia. Urology. 2022;164:133-139. [DOI:10.1016/j.urology.2022.02.009]
Mahmoudi F Z, Gholami D, Mohammadian A, Azizi H. Identification of Key Genes in Patients with Non-Obstructive Azoospermia. J Ardabil Univ Med Sci 2025; 25 (3) :304-318 URL: http://jarums.arums.ac.ir/article-1-2540-en.html