[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
indexing and abstracting::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 25, Issue 1 (Spring 2025) ::
J Ardabil Univ Med Sci 2025, 25(1): 74-89 Back to browse issues page
Study of Klebsiella pneumoniae Vaccine Based on the Epitopes of Outer Membrane Proteins: An Immunoinformatic Approach
Hamid Vaez * , Mohammad Amin Sargazi , Ali Zeidabadi , Mohammadreza Javan , Farzad Khademi , Abbas Pishdadian
Department of Microbiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran , h_vaez@zbmu.ac.ir
Abstract:   (62 Views)
Background: Klebsiella pneumoniae (K. pneumoniae) infections are usually considered life-threatening. Vaccination plays a crucial role in reducing the spread and mortality of infectious diseases. The present study aimed to investigate outer membrane protein K36 (OmpK36) and outer membrane protein X (OmpX) to identify suitable B-cell and T-cell epitopes for vaccine development against K. pneumoniae infections.
Methods: To identify suitable B-cell and T-cell epitopes, bioinformatics servers were utilized, including VaxiJen, IEDB, APP, ABCpred, ExPASy, and EMBOSS. Molecular and physicochemical characteristics, as well as human similarity, toxicity, and allergenicity of epitopes were investigated. 
Results: The results of this study revealed that OmpK36 and OmpX are immunogenic. In total, 18 epitopes were identified, 13 for OmpK36 and 5 for OmpX. Exclusion criteria were applied, and eight epitopes were ultimately selected.
Conclusion: According to the results of this study, eight appropriate epitopes for B cells and T cells were proposed for vaccine design against K. pneumoniae. Further in vitro and in vivo studies are recommended before determining the use of epitopes.
Article number: 6
Keywords: K. pneumonia, Bacterial Infections, Klebsiella Infections, Outer Membrane Proteins, Vaccine
Full-Text [PDF 1233 kb]   (45 Downloads)    
Type of Study: article | Subject: Microbiology
Received: 2025/07/10 | Accepted: 2025/09/13 | Published: 2025/09/27
References
1. Li Y, Kumar S, Zhang L. Mechanisms of antibiotic resistance and developments in therapeutic strategies to combat Klebsiella pneumoniae infection. Infect Drug Resist. 2024; 17: 1107-19. [DOI:10.2147/IDR.S453025] [PMID] []
2. Han X, Yao J, He J, Liu H, Jiang Y, Zhao D, et al. Clinical and laboratory insights into the threat of hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents. 2024; 64 (3):107275. [DOI:10.1016/j.ijantimicag.2024.107275] [PMID]
3. Beig M, Aghamohammad S, Majidzadeh N, Asforooshani MK, Rezaie N, Abed S, et al. Antibiotic resistance rates in hypervirulent Klebsiella pneumoniae strains: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2024; 38: 376-88. [DOI:10.1016/j.jgar.2024.06.018] [PMID]
4. Tang Y, Du P, Du C, Yang P, Shen N, Russo TA, et al. Genomically defined hypervirulent Klebsiella pneumoniae contributed to early-onset increased mortality. Nat Commun. 2025; 16(1): 2096. [DOI:10.1038/s41467-025-57379-4] [PMID] []
5. Liao Y, Gong J, Yuan X, Wang X, Huang Y, Chen X. Virulence factors and carbapenem-resistance mechanisms in hypervirulent Klebsiella pneumoniae. Infect Drug Resist. 2024; 17: 1551-9. [DOI:10.2147/IDR.S461903] [PMID] []
6. Vaez H, Yazdanpour Z. Distribution of virulence‐associated and aminoglycoside resistance genes among clinical isolates of Klebsiella pneumoniae in the southeast of Iran, during 2019-2023: a cross‐sectional study. Health Sci Rep. 2024; 7(12): e70309. [DOI:10.1002/hsr2.70309] [PMID] []
7. Dangor Z, Benson N, Berkley JA, Bielicki J, Bijsma MW, Broad J, et al. Vaccine value profile for Klebsiella pneumoniae. Vaccine. 2024; 42(19): S125-41. [DOI:10.1016/j.vaccine.2024.02.072] [PMID]
8. Lin TL, Yang FL, Ren CT, Pan YJ, Liao KS, Tu IF, et al. Development of Klebsiella pneumoniae capsule polysaccharide-conjugated vaccine candidates using phage depolymerases. Front Immunol. 2022; 13: 843183. [DOI:10.3389/fimmu.2022.843183] [PMID] []
9. Vaez H, Vaez V. Comprehensive analysis of four major surface proteins for vaccine design against Klebsiella pneumoniae. Infect Epidemiol Microb. 2025; 11(1): 1-12 [DOI:10.61186/iem.11.1.1]
10. Douradinha B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res. 2024:127837. [DOI:10.1016/j.micres.2024.127837] [PMID]
11. Garnier J. GOR secondary structure prediction method version IV. Meth Enzym RF Doolittle Ed. 1998; 266: 540-53. [DOI:10.1016/S0076-6879(96)66034-0] [PMID]
12. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The Proteomics Protocol Handbook. Totowa, NJ: Humana press; 2005. [DOI:10.1385/1-59259-890-0:571]
13. Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens, and subunit vaccines. BMC Bioinfo. 2007; 8: 1-7. [DOI:10.1186/1471-2105-8-4] [PMID] []
14. Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immune Res. 2006; 2: 1-7. [DOI:10.1186/1745-7580-2-1] [PMID] []
15. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1979; 47: 45-148. [DOI:10.1002/9780470122921.ch2] [PMID]
16. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins: A tool for the selection of peptide antigens. Naturwissenschaften.1985; 72(4): 212-3. [DOI:10.1007/BF01195768]
17. Emini EA, Hughes JV, Perlow D, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol.1985; 55(3): 836-9. [DOI:10.1128/jvi.55.3.836-839.1985] [PMID] []
18. Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990; 276(12): 172-4. [DOI:10.1016/0014-5793(90)80535-Q] [PMID]
19. Saha S, Raghava GP. Prediction of continuous comprehensive review of vaccine development B-cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Bioinf. 2006; 65(1): 40-8. [DOI:10.1002/prot.21078] [PMID]
20. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISSMODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46: 296-303. [DOI:10.1093/nar/gky427] [PMID] []
21. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all-atom structure validation. Prot Sci. 2018; 27(1): 293315. [DOI:10.1002/pro.3330] [PMID] []
22. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, In silico approach for predicting toxicity of peptides and proteins. PloS One. 2013; 8(9): e73957. [DOI:10.1371/journal.pone.0073957] [PMID] []
23. Nguyen MN, Krutz NL, Limviphuvadh V, Lopata AL, Gerberick GF, Maurer-Stroh S. AllerCatPro2.0: A web server for predicting protein allergenicity potential. Nucleic Acids Res.
24. 2022; 50: 36-43.
25. Walker JM. The proteomics protocols handbook. Humana press. Springer; 2005. [DOI:10.1385/1592598900]
26. Yan Z, Kim K, Kim H, Ha B, Gambiez A, Bennett J, et al. Next-generation IEDB tools: a platform for epitope prediction and analysis. Nucleic Acids Res. 2024; 52: 526-32. [DOI:10.1093/nar/gkae407] [PMID] []
27. Miller JC, Cross AS, Tennant SM, Baliban SM. Klebsiella pneumoniae lipopolysaccharide as a vaccine target and the role of antibodies in protection from disease. Vaccine. 2024 ;12(10): 1177. [DOI:10.3390/vaccines12101177] [PMID] []
28. Chen Z, Gou Q, Yuan Y, Zhang X, Zhao Z, Liao J, et al. Vaccination with a trivalent Klebsiella pneumoniae vaccine confers protection in a murine model of pneumonia. Vaccine. 2024; 42(23): 126217. [DOI:10.1016/j.vaccine.2024.126217] [PMID]
29. Shamanna V, Srinivas S, Couto N, Nagaraj G, Sajankila SP, Krishnappa HG, et al. Geographical distribution, disease association and diversity of Klebsiella pneumoniae K/L and O antigens in India: roadmap for vaccine development. Microb Genom. 2024; 10(7): 001271. [DOI:10.1099/mgen.0.001271]
30. Li M, Yu M, Yuan Y, Li D, Ye D, Zhao M, et al. Designing a conjugate vaccine targeting Klebsiella pneumoniae ST258 and ST11. Heliyon. 2024; 10(5): 27417. [DOI:10.1016/j.heliyon.2024.e27417] [PMID] []
31. Hakimian M, Doosti A, Sharifzadeh A. A novel chimeric vaccine containing multiple epitopes for simulating robust immune activation against Klebsiella pneumoniae. BMC Immunol. 2024; 25(1): 27. [DOI:10.1186/s12865-024-00617-z] [PMID] []
32. Tajuelo A, Gato E, Oteo-Iglesias J, Pérez-Vázquez M, McConnell MJ, Martín-Galiano AJ, et al. Deep intra clonal analysis for the development of vaccines against drug-resistant Klebsiella pneumoniae lineages. Int J Mole Sci. 2024; 25(18): 9837. [DOI:10.3390/ijms25189837] [PMID] []
33. Illenseher MS, Hentschker C, Gesell Salazar M, Busch LM, Zierke L, Reder A, et al. Global quantitative proteome analysis of a multi-resistant Klebsiella pneumoniae strain. Front Microbiol. 2025; 16: 1528869. [DOI:10.3389/fmicb.2025.1528869] [PMID] []
34. Meekes LM, Heikema AP, Tompa M, Astorga Alsina AL, Hiltemann SD, Stubbs AP, et al. Proteogenomic analysis demonstrates increased bla OXA-48 copy numbers and OmpK36 loss as contributors to carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2025; 69 (7): e00107-25.
35. Ranjbar KJ, Sarkoohi P, Shahbazi B, Babaei M, Ahmadi K. Bioinformatics analysis of the in silico engineered protein vaccine with and without Escherichia coli heat-labile enterotoxin adjuvant on the model of Klebsiella pneumoniae. Sci Rep. 2025; 15(1): 7321. [DOI:10.1038/s41598-025-91602-y] [PMID] []
36. Novak P, Havlícek V. Protein extraction and precipitation. proteomic profiling and analytical chemistry: The crossroads. Elsevier; 2016. [DOI:10.1016/B978-0-444-63688-1.00004-5] [PMID]
37. Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic identification of multiple epitopes of gp120 protein of HIV-1 to enhance the immune response against HIV-1 infection. Int J Mole Sci. 2024; 25(4): 2432. [DOI:10.3390/ijms25042432] [PMID] []
38. Zargaran FN, Akya A, Rezaeian S, Ghadiri K, Lorestani RC, Madanchi H, et al. B cell epitopes of four fimbriae antigens of Klebsiella pneumoniae: a comprehensive in silico study for vaccine development. Int J Pept Res Ther. 2021; 27(2): 875-86. [DOI:10.1007/s10989-020-10134-3] [PMID] []
39. Hussein KE, Bahey-El-Din M, Sheweita SA. Immunization with the outer membrane proteins OmpK17 and OmpK36 elicits protection against Klebsiella pneumoniae in the murine infection model. Microb Pathog. 2018; 119: 12-8. [DOI:10.1016/j.micpath.2018.04.004] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.ZBMU.REC.1403.174



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vaez H, Sargazi M A, Zeidabadi A, Javan M, Khademi F, Pishdadian A. Study of Klebsiella pneumoniae Vaccine Based on the Epitopes of Outer Membrane Proteins: An Immunoinformatic Approach. J Ardabil Univ Med Sci 2025; 25 (1) : 6
URL: http://jarums.arums.ac.ir/article-1-2517-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 25, Issue 1 (Spring 2025) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 41 queries by YEKTAWEB 4623