[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 24, Issue 3 (Autumn 2024) ::
J Ardabil Univ Med Sci 2024, 24(3): 241-264 Back to browse issues page
The Effect of Resistance and Endurance Exercise on Alzheimer's Biomarkers: A Review Article
Parinaz Tabibvand , Somayah Asadollahi , Masoomeh Dadkhah *
Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran , m.dadkhah@arums.ac.ir
Abstract:   (350 Views)
Alzheimer's disease is a progressive, incessant and neurodegenerative disorder that affects large areas of the cerebral cortex and hippocampus. Abnormalities first involve the frontal and temporal lobes in the brain tissue and then slowly reach other areas of the neocortex. It seems that Alzheimer's patients who participated in sports activities had an increase in blood flow, hippocampal volume and improved neurogenesis. In this study, we provide an overview of the positive effects of exercise on the biomarkers of this challenging disease. In this study, PubMed, Google Scholar, and SID.IR databases were searched with the keywords "Alzheimer, Resistance Training, Endurance Training, Biomarker" between the years 2000 and 2024. The results of the studies indicate that exercise can be a non-pharmacological strategy to prevent or delay the decline of the cognitive power of the brain. Exercise also plays an effective role in changes in plasma biomarkers associated with Alzheimer's and cognitive impairment associated with the disease. Among the changes created following sports activity, we can mention the increase in the expression of neurotrophic factors in the brain, inhibition of oxidative stress, and angiogenesis, which leads to an increase in blood supply to the hippocampus tissue.

 
Keywords: Alzheimer's Disease, Biomarker, Endurance Training, Resistance Training
Full-Text [PDF 1017 kb]   (276 Downloads)    
Type of Study: review article | Subject: Exercise physiology
Received: 2024/09/17 | Accepted: 2025/12/2 | Published: 2025/01/29
References
1. Jafarian S, Ling KH, Hassan Z, Perimal‐Lewis L, Sulaiman MR, Perimal EK. Effect of zerumbone on scopolamine‐induced memory impairment and anxiety‐like behaviours in rats. Alzheimers Dement (N Y). 2019; 5:637-643. [DOI:10.1016/j.trci.2019.09.009] [PMID] []
2. Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta. 2012; 1822:639-649. [DOI:10.1016/j.bbadis.2011.10.011] [PMID] []
3. Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004; 140:627-638. [DOI:10.7326/0003-4819-140-8-200404200-00047] [PMID]
4. Mufson EJ , Counts SE, Ginsberg SD, Mahady L, Perez SE, Massa SM, et al. Nerve growth factor pathobiology during the progression of Alzheimer's disease. Front Neurosci. 2019; 13:533. [DOI:10.3389/fnins.2019.00533] [PMID] []
5. Karakaya T, Fußer F, Prvulovic D, Hampel H. Treatment options for tauopathies. Curr Treat Options. Neurol. 2012; 14:126-136. [DOI:10.1007/s11940-012-0168-7] [PMID]
6. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current concepts of neurodegenerative mechanisms in Alzheimer's disease. BioMed Res Int. 2018; 20: 3740461. [DOI:10.1155/2018/3740461] [PMID] []
7. Hameed S, Fuh J-L, Senanarong V, Ebenezer EGM, Looi I, Dominguez JC, et al. Role of fluid biomarkers and PET imaging in early diagnosis and its clinical implication in the management of Alzheimer's disease. J Alzheimers Dis Rep. 2020; 4 (1):21-37. [DOI:10.3233/ADR-190143] [PMID] []
8. Blennow K, Dubois B, Fagan AM, Lewczuk P, De Leon MJ, Hampel H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease. Alzheimer's Dement. 2015; 11(1):58-69. [DOI:10.1016/j.jalz.2014.02.004] [PMID] []
9. Kuga GK, Botezelli JD, Gaspar RC, Gomes RJ, Pauli JR, Leme JACdA. Hippocampal insulin signaling and neuroprotection mediated by physical exercise in Alzheimer' s Disease. Motriz: Revista de Educação Física. 2017; 23:e101608. (Full text in original language) [DOI:10.1590/s1980-6574201700si0008]
10. Trends G. Public health and aging: trends in aging-United States and worldwide. Public Health. 2003; 347:921-925.
11. Korczyn AD, Vakhapova V. The prevention of the dementia epidemic. J Neurol Sci. 2007; 257 (2-4):2-4. [DOI:10.1016/j.jns.2007.01.081] [PMID]
12. Agahi A, Hamidi G, Salami M, Alinaghipour A, Daneshvar KR, Soheili M. The effect of probiotic supplementations on cognitive function in patients with primary and secondary Alzheimer. J Arak Uni Med Sci. 2018; 20:1-9. (Full text in Persian). [DOI:10.3389/fneur.2018.00662] [PMID] []
13. Morrison AS, Lyketsos C. The pathophysiology of Alzheimer's disease and directions in treatment. Adv Stud Nurs. 2005; 3:256-270.
14. Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F, et al. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol. 1997; 31(1):53-64. [DOI:10.1007/BF02815160] [PMID]
15. Bianchetti A, Ranieri P, Margiotta A, Trabucchi M. Pharmacological treatment of Alzheimer's Disease. Aging Clin Exp Res. 2006; 18 (2):158-162. [DOI:10.1007/BF03327433] [PMID]
16. Zhao Y, Bhattacharjee S, Jones BM, Hill JM, Clement C, Sambamurti K, et al. Beta-amyloid precursor protein (βAPP) processing in Alzheimer's disease (AD) and age-related macular degeneration (AMD). Mol Neurobiol. 2015; 52 (1):533-544. [DOI:10.1007/s12035-014-8886-3] [PMID] []
17. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat Rev Mol Cell Biol. 2007; 8 (2):101-112. [DOI:10.1038/nrm2101] [PMID]
18. Kosik KS. The molecular and cellular biology of tau. Brain Pathol. 1993; 3 (1):39-43. [DOI:10.1111/j.1750-3639.1993.tb00724.x] [PMID]
19. Mandelkow E, Von Bergen M, Biernat J, Mandelkow EM. Structural principles of tau and the paired helical filaments of Alzheimer's disease. Brain Pathol. 2007; 17 (1):83-90. [DOI:10.1111/j.1750-3639.2007.00053.x] [PMID] []
20. Mcgeer PL, Klegeris A, Walker DG, Yasuhara O, Mcgeer EG. Pathological proteins in senile plaques. Tohoku J Exp Med. 1994; 174 (3):269-277. [DOI:10.1620/tjem.174.269] [PMID]
21. Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. J Compar Neurol. 2013; 521 (18):4124-4144. [DOI:10.1002/cne.23415] [PMID] []
22. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain. 2018; 141 (7):1917-1933. [DOI:10.1093/brain/awy132] [PMID] []
23. Meng Q, Lin M-S, Tzeng I-S. Relationship between exercise and Alzheimer's disease: a narrative literature review. Front Neurosci. 2020; 14:131. [DOI:10.3389/fnins.2020.00131] [PMID] []
24. Bailey DM, Marley CJ, Brugniaux JV, Hodson D, New KJ, Ogoh S, et al. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke. 2013; 44 (11):3235-3238. [DOI:10.1161/STROKEAHA.113.002589] [PMID]
25. Duzel E, van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function? Brain. 2016; 139 (3):662-673. [DOI:10.1093/brain/awv407] [PMID] []
26. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009; 19 (10):1030-1039. [DOI:10.1002/hipo.20547] [PMID] []
27. Beeri MS, Leugrans SE, Delbono O, Bennett DA, Buchman AS. Sarcopenia is associated with incident Alzheimer's dementia, m ild cognitive impairment, and cognitive decline. J Am Geriatr Soc. 2021; 69 (7):1826-1835. [DOI:10.1111/jgs.17206] [PMID] []
28. Lopez P, Pinto RS, Radaelli R, Rech A, Grazioli R, Izquierdo M, et al. Benefits of resistance training in physically frail elderly: a systematic review. Aging Clin Exper Res. 2018; 30 (8):889-899. [DOI:10.1007/s40520-017-0863-z] [PMID]
29. de Almeida EJR, Ibrahim HJ, Chitolina SMR, de Andrade CM, Cardoso AM. Modulation of inflammatory mediators and microglial activation through physical exercise in Alzheimer's and Parkinson's diseases. Neurochem Res. 2022; 47 (11):3221-3240. [DOI:10.1007/s11064-022-03713-x] [PMID]
30. Hong S-G, Kim J-H, Jun T-W. Effects of 12-week resistance exercise on electroencephalogram patterns and cognitive function in the elderly with mild cognitive impairment: a randomized controlled trial. Clin J Sport Med. 2018; 28 (6):500-508. [DOI:10.1097/JSM.0000000000000476] [PMID]
31. Azevedo CV, Hashiguchi D, Campos HC, Figueiredo EV, Otaviano SFS, Penitente AR, et al. The effects of resistance exercise on cognitive function, amyloidogenesis, and neuroinflammation in Alzheimer's disease. Front Neurosci. 2023; 17:1131214. [DOI:10.3389/fnins.2023.1131214] [PMID] []
32. Liu Y, Chu JMT, Yan T, Zhang Y, Chen Y, Chang RCC, et al. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer's disease mice. J Neuroinflamm. 2020; 17 (1):1-16. [DOI:10.1186/s12974-019-1653-7] [PMID] []
33. Timmons JA, Baar K, Davidsen PK, Atherton PJ. Is irisin a human exercise gene? Nature. 2012; 488 (7413):E9-E10. [DOI:10.1038/nature11364] [PMID]
34. Albeck DS, Sano K, Prewitt GE, Dalton L. Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res. 2006; 168 (2):345-348. [DOI:10.1016/j.bbr.2005.11.008] [PMID]
35. Bayod S, Del Valle J, Canudas AM, Lalanza JF, Sanchez-Roige S, Camins A, et al. Long-term treadmill exercise induces neuroprotective. J Appl Physiol .1985; 111(5):1380-90. [DOI:10.1152/japplphysiol.00425.2011] [PMID]
36. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A .2011; 108 (7):3017-3022. [DOI:10.1073/pnas.1015950108] [PMID] []
37. Diniz BS, Pinto Jr JA, Forlenza OV. Do CSF total tau, phosphorylated tau, and β-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer's disease? A systematic review and meta-analysis of the literature. World J Biol Psychiatry. 2008; 9 (3):172-182. [DOI:10.1080/15622970701535502] [PMID]
38. McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, et al. Cerebrospinal fluid biomarkers of Alzheimer's disease: current evidence and future perspectives. Brain Sci. 2021; 11(2):215. [DOI:10.3390/brainsci11020215] [PMID] []
39. Baiardi S, Abu‐Rumeileh S, Rossi M, Zenesini C, Bartoletti‐Stella A, Polischi B, et al. Antemortem CSF Aβ42/Aβ40 ratio predicts Alzheimer's disease pathology better than Aβ42 in rapidly progressive dementias. Ann Clin Transl Neurol. 2019; 6 (2):263-273. [DOI:10.1002/acn3.697] [PMID] []
40. Spies P, Slats D, Sjogren J, Kremer B, Verhey F, Olde Rikkert M, et al. The cerebrospinal fluid amyloid β42/40 ratio in the differentiation of alzheimer's disease from non-alzheimer's dementia. Curr Alzheimer Res. 2010; 7 (5):470-476. [DOI:10.2174/156720510791383796] [PMID]
41. Janelidze S, Zetterberg H, Mattsson N, Palmqvist S, Vanderstichele H, Lindberg O, et al. CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol. 2016; 3 (3):154-165. [DOI:10.1002/acn3.274] [PMID] []
42. Fukumoto H, Cheung BS, Hyman BT, Irizarry MC. β-Secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch Neurol. 2002; 59 (9):1381-1389. [DOI:10.1001/archneur.59.9.1381] [PMID]
43. Holsinger RD, McLean CA, Beyreuther K, Masters CL, Evin G. Increased expression of the amyloid precursor β‐secretase in Alzheimer's disease. Ann Neurol. 2002; 51 (6):783-786. [DOI:10.1002/ana.10208] [PMID]
44. Zetterberg H, Andreasson U, Hansson O, Wu G, Sankaranarayanan S, Andersson ME, et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol. 2008; 65 (8):1102-1107. [DOI:10.1001/archneur.65.8.1102] [PMID]
45. Gunnarsson MD, Ingelsson M, Blennow K, Basun H, Lannfelt L, Kilander L. High tau levels in cerebrospinal fluid predict nursing home placement and rapid progression in Alzheimer's disease. Alzheimer's Res Ther. 2016; 8(22): 1-10. [DOI:10.1186/s13195-016-0191-0] [PMID] []
46. Petersen A, Gerges NZ. Neurogranin regulates CaM dynamics at dendritic spines. Sci Rep. 2015; 5:11135. [DOI:10.1038/srep11135] [PMID] []
47. Kester MI, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P, et al. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol. 2015; 72 (11):1275-1280. [DOI:10.1001/jamaneurol.2015.1867] [PMID] []
48. Counts SE, Nadeem M, Lad SP, Wuu J, Mufson EJ. Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J Neuropathol Exp Neurol. 2006; 65 (6):592-601. [DOI:10.1097/00005072-200606000-00007] [PMID]
49. Öhrfelt A, Brinkmalm A, Dumurgier J, Brinkmalm G, Hansson O, Zetterberg H, et al. The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer's disease. Alzheimer's Res Ther. 2016; 8(41):1-10. [DOI:10.1186/s13195-016-0208-8] [PMID] []
50. Denny JB. Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol. 2006; 4 (4):293-304. [DOI:10.2174/157015906778520782] [PMID] []
51. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002; 71 (3):656-662. [DOI:10.1086/342259] [PMID] []
52. Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, et al. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci. 2004; 20 (10):2617-2628. [DOI:10.1111/j.1460-9568.2004.03729.x] [PMID]
53. Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-mediated down-regulation of the microglial-enriched triggering receptor and phagocytosis-sensor TREM2 in age-related macular degeneration. PloS One. 2016; 11(3):e0150211. [DOI:10.1371/journal.pone.0150211] [PMID] []
54. Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease. Mol Neurodegener. 2016; 11:1-7. [DOI:10.1186/s13024-016-0071-x] [PMID] []
55. Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, et al. Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol. 2006; 63 (4):538-543. [DOI:10.1001/archneur.63.4.538] [PMID]
56. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119 (1):7-35. [DOI:10.1007/s00401-009-0619-8] [PMID] []
57. Comi C, Carecchio M, Chiocchetti A, Nicola S, Galimberti D, Fenoglio C, et al. Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer's disease and its levels correlate with cognitive decline. J Alzheimer's Dis. 2010; 19 (4):1143-1148. [DOI:10.3233/JAD-2010-1309] [PMID]
58. Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab. 2010; 30 (3):459-473. [DOI:10.1038/jcbfm.2009.240] [PMID] []
59. Chen C-C, Llado V, Eurich K, Tran HT, Mizoguchi E. Carbohydrate-binding motif in chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells. Clin Immunol. 2011; 140 (3):268-275. [DOI:10.1016/j.clim.2011.04.007] [PMID] []
60. Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. A novel prognostic fluid biomarker for preclinical Alzheimer's disease. Biol Psy. 2010; 68 (10):903-912. [DOI:10.1016/j.biopsych.2010.08.025] [PMID] []
61. Groblewska M, Mroczko B. YKL-40 as a potential biomarker and a possible target in therapeutic strategies of Alzheimer's disease. Curr Neuropharmacol. 2017; 15 (6):906-917. [DOI:10.2174/1570159X15666170208124324] [PMID] []
62. Braunewell KH. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer's disease-old wine in new bottles. Front Mol Neurosci. 2012; 5:20. [DOI:10.3389/fnmol.2012.00020] [PMID] []
63. Lee J-M, Blennow K, Andreasen N, Laterza O, Modur V, Olander J, et al. The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin Chem. 2008; 54 (10):1617-1623. [DOI:10.1373/clinchem.2008.104497] [PMID] []
64. Pijnenburg YA, Janssen JC, Schoonenboom NS, Petzold A, Mulder C, Stigbrand T, et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer's disease and controls. Dement Geriatr Cogn Disord. 2007; 23 (4):225-230. [DOI:10.1159/000099473] [PMID]
65. Garcia-Escobar G, Manero RM, Fernández-Lebrero A, Ois A, Navalpotro-Gómez I, Puente-Periz V, et al. Blood biomarkers of Alzheimer's disease and cognition: A literature review. Biomolecules. 2024; 14(1):93. [DOI:10.3390/biom14010093] [PMID] []
66. Chatterjee P, Pedrini S, Doecke JD, Thota R, Villemagne VL, Doré V, et al. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement. 2023; 19 (4):1117-1134. [DOI:10.1002/alz.12724] [PMID]
67. Braunewell K-H, Szanto AJK. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+-sensor proteins. Cell Tissue Res. 2009; 335 (2):301-316. [DOI:10.1007/s00441-008-0716-3] [PMID] []
68. Halbgebauer S, Steinacker P, Riedel D, Oeckl P, Anderl-Straub S, Lombardi J, et al. Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer's and other neurodegenerative diseases. Alzheimer's Res Ther. 2022; 14 (1):175. [DOI:10.1186/s13195-022-01122-4] [PMID] []
69. Paula-Lima AC, Tricerri MA, Brito-Moreira J, Bomfim TR, Oliveira FF, Magdesian MH, et al. Human apolipoprotein A-I binds amyloid-β and prevents Aβ-induced neurotoxicity. Int J Biochem Cell Biol. 2009; 41(6):1361-1370. [DOI:10.1016/j.biocel.2008.12.003] [PMID]
70. Choi J, Lee H-W, Suk K. Plasma level of chitinase 3-like 1 protein increases in patients with early Alzheimer's disease. J Neurol. 2011; 258 (12):2181-2185. [DOI:10.1007/s00415-011-6087-9] [PMID]
71. Kantarci K, Jack CR. Neuroimaging in Alzheimer disease: an evidence-based review. Neuroimaging Clin N Am. 2003; 13 (2):197-209. [DOI:10.1016/S1052-5149(03)00025-X] [PMID]
72. Thal LJ, Kantarci K, Reiman EM, Klunk WE, Weiner MW, Zetterberg H, et al. The role of biomarkers in clinical trials for Alzheimer disease.
73. Alzheimer Dis Assoc Disord. 2006; 20(1):6-15.
74. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006; 29:449-476. [DOI:10.1146/annurev.neuro.29.051605.112819] [PMID]
75. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002; 1(1):13-21. [DOI:10.1016/S1474-4422(02)00002-9] [PMID]
76. Anoop A, Singh PK, Jacob RS, Maji SK. CSF biomarkers for Alzheimer′ s disease diagnosis. Int J Alzheimer's Dis. 2010; 2010 (1):1-12. [DOI:10.4061/2010/606802] [PMID] []
77. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med. 2016; 8(338):1-19. [DOI:10.1126/scitranslmed.aaf2362] [PMID] []
78. Ossenkoppele R, Rabinovici GD, Smith R, Cho H, Schöll M, Strandberg O, et al. Discriminative accuracy of [18F] flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2018; 320(11):1151-1162. [DOI:10.1001/jama.2018.12917] [PMID] []
79. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol. 2016; 15(7):673-684. [DOI:10.1016/S1474-4422(16)00070-3] [PMID]
80. Zhang H, Therriault J, Kang MS, Ng KP, Pascoal TA, Rosa-Neto P, et al. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer's disease. Alzheimer's Res Ther .2018; 10(1):1-11. [DOI:10.1186/s13195-018-0407-6] [PMID] []
81. Davidsson P, Blennow K. Neurochemical dissection of synaptic pathology in Alzheimer's disease. Int Psychogeriatr. 1998; 10(1):11-23. [DOI:10.1017/S1041610298005110] [PMID]
82. Jesse S, Steinacker P, Cepek L, Arnim CV, Tumani H, Lehnert S, et al. Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer's disease and Creutzfeldt-Jakob disease. J Alzheimer's Dis. 2009; 17(3):541-551. [DOI:10.3233/JAD-2009-1075] [PMID]
83. Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, et al. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology. 2018; 91(9):e867-e877. [DOI:10.1212/WNL.0000000000006082] [PMID] []
84. Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer's disease: State-of-the-science. Ageing Res Rev. 2020; 62:101108. [DOI:10.1016/j.arr.2020.101108] [PMID]
85. Lopez-Ortiz S, Valenzuela PL, Seisdedos MM, Morales JS, Vega T, Castillo-Garcia A, et al. Exercise interventions in Alzheimer's disease: A systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev. 2021; 72:101479. [DOI:10.1016/j.arr.2021.101479] [PMID]
86. López-Ortiz S, Pinto-Fraga J, Valenzuela PL, Martín-Hernández J, Seisdedos MM, García-López O, et al. Physical exercise and Alzheimer's disease: effects on pathophysiological molecular pathways of the disease. Int J Molecular Sci. 2021; 22 (6):2897. [DOI:10.3390/ijms22062897] [PMID] []
87. Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, et al. Exercise to counteract Alzheimer's disease: What do fluid biomarkers say? Int J Molecular Sci. 2024; 25(13):6951. [DOI:10.3390/ijms25136951] [PMID] []
88. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Annals of Neurol. 2010; 68 (3):311-318. [DOI:10.1002/ana.22096] [PMID] []
89. Casaletto KB, Kornack J, Paolillo EW, Rojas JC, VandeBunte A, Staffaroni AS, et al. Association of physical activity with neurofilament light chain trajectories in autosomal dominant frontotemporal lobar degeneration variant carriers. JAMA Neurol. 2023; 80 (1):82-90. [DOI:10.1001/jamaneurol.2022.4178] [PMID] []
90. Sewell KR, Rainey-Smith SR, Pedrini S, Peiffer JJ, Sohrabi HR, Taddei K, et al. The impact of exercise on blood-based biomarkers of Alzheimer's disease in cognitively unimpaired older adults. Geroscience. 2024; 46(6):5911-5923. [DOI:10.1007/s11357-024-01130-2] [PMID] []
91. Yang S-Y, Shan C-L, Qing H, Wang W, Zhu Y, Yin M-M, et al. The effects of aerobic exercise on cognitive function of Alzheimer's disease patients. CNS Neurol Disord Drug Targets. 2015; 14(10):1292-1297. [DOI:10.2174/1871527315666151111123319] [PMID]
92. Jensen CS, Portelius E, Høgh P, Wermuth L, Blennow K, Zetterberg H, et al. Effect of physical exercise on markers of neuronal dysfunction in cerebrospinal fluid in patients with Alzheimer's disease. Alzheimers Dement (N Y). 2017; 3(2):284-290. [DOI:10.1016/j.trci.2017.03.007] [PMID] []
93. Law LL, Rol RN, Schultz SA, Dougherty RJ, Edwards DF, Koscik RL, et al. Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer's disease. Alzheimer's Dement. 2018; 10:188-195. [DOI:10.1016/j.dadm.2018.01.001] [PMID] []
94. Gaitán JM, Moon HY, Stremlau M, Dubal DB, Cook DB, Okonkwo OC, et al. Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer's disease. Front Endocrinol. 2021; 12:660181. [DOI:10.3389/fendo.2021.660181] [PMID] []
95. Stigger FS, Zago Marcolino MA, Portela KM, Plentz RDM. Effects of exercise on inflammatory, oxidative, and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci. 2019; 74 (5):616-624. [DOI:10.1093/gerona/gly173] [PMID]
96. Lin T-W, Tsai S-F, Kuo Y-M. Physical exercise enhances neuroplasticity and delays Alzheimer's disease. Brain Plasticity. 2018; 4 (1):95-110. [DOI:10.3233/BPL-180073] [PMID] []
97. Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis. 2015; 6 (5):331. [DOI:10.14336/AD.2015.0825] [PMID] []
98. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002; 25 (6):295-301. [DOI:10.1016/S0166-2236(02)02143-4] [PMID]
99. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat med. 2009; 15:331-337. [DOI:10.1038/nm.1912] [PMID] []
100. Yarrow JF, White LJ, McCoy SC, Borst SE. Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neurosci Lett. 2010; 479 (2):161-165. [DOI:10.1016/j.neulet.2010.05.058] [PMID]
101. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008; 7:119-32.
102. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, et al. Exercise plays a preventive role against Alzheimer's disease. J Alzheimer's Dis. 2010; 20 (3):777-783. [DOI:10.3233/JAD-2010-091531] [PMID]
103. Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC. Amyloid β-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol . 2009; 68 (8):857-869. [DOI:10.1097/NEN.0b013e3181aed9e6] [PMID]
104. Radak Z, Taylor AW, Ohno H, Goto S. Adaptation to exercise-induced oxidative stress: from muscle to brain. Exer Immunol Re. 2001; 7:90-107.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: ARUMS.1403


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tabibvand P, Asadollahi S, Dadkhah M. The Effect of Resistance and Endurance Exercise on Alzheimer's Biomarkers: A Review Article. J Ardabil Univ Med Sci 2024; 24 (3) :241-264
URL: http://jarums.arums.ac.ir/article-1-2422-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 3 (Autumn 2024) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4623