[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: In Press ::
Back to the articles list Back to browse issues page
A Review of the Progress in the Development of Leishmaniasis Vaccines
Narges Khaghanzadeh , Fatemeh Javadi , Afshin Samiei *
Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran , afshin.samiei@hums.ac.ir
Abstract:   (68 Views)
Leishmaniasis is a parasitic infectious disease that accounts for approximately one million new cases annually. The treatment of this disease is complex and costly, particularly in developing countries. Numerous studies have been conducted on various vaccines utilizing live attenuated parasites, killed parasites, subunit antigens, recombinant vaccines, and DNA technology. However,  an effective and widely applicable preventive vaccine for leishmaniasis has not yet been developed. Present study aimed  to examine the progress in the development of leishmaniasis vaccines.
Articles for this study were selected from the PubMed, Web of Science and Scopus databases using relevant keywords, focusing on subject matter, scientific quality, and publication date, with an emphasis on more recent publications.
Research on the development of leishmaniasis vaccines indicates that several candidates, such as Leishmune, CaniLeish, and Leish-Tec, which are at various stages of clinical trials, may serve as suitable options for controlling and preventing leishmaniasis in dogs. The LeishChim vaccine, designed using immunoinformatics and molecular docking techniques, has shown promising efficacy results in mouse studies. Additionally, the mutant gene-centered LmCen-/- vaccine has completed Phase 1 clinical trials in humans.
Given the importance of developing a leishmaniasis vaccine, research in this area continues. Utilizing immunoinformatics and biological modeling studies can aid in the faster identification of effective vaccine candidates.
 
Keywords: Leishmaniasis, Vaccine, Cutaneous Leishmaniasis, Mucocutaneous Leishmaniasis, Visceral Leishmaniasis
Full-Text [PDF 529 kb]   (68 Downloads)    
Type of Study: review article | Subject: Immunology
Received: 2024/06/18 | Accepted: 2024/08/21
References
1. de Vries HJ, Reedijk SH, Schallig HD. Cutaneous leishmaniasis: Recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16(2):99-109. [DOI:10.1007/s40257-015-0114-z]
2. Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349. [DOI:10.1371/journal.pntd.0004349]
3. Dinc R. Leishmania vaccines: The current situation with its promising aspect for the future. Korean J Parasitol. 2022;60(6): 379-391. [DOI:10.3347/kjp.2022.60.6.379]
4. Dinc R. New developments in the treatment of cutaneous leishmaniasis. Asian Pac. J Trop Med. 2022;15(5):196-205. [DOI:10.4103/1995-7645.345944]
5. Moafi M, Rezvan H, Sherkat R, Taleban R. Leishmania vaccines entered in clinical trials: A review of literature. Int J Prev Med. 2019;10:95. [DOI:10.4103/ijpvm.IJPVM_116_18]
6. Saha S, Vashishtha S, Kundu B, Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against leishmania donovani. BMC Bioinformatics. 2022;23(1):319. [DOI:10.1186/s12859-022-04816-6]
7. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000Res. 2017;6:750. [DOI:10.12688/f1000research.11120.1]
8. Eyayu T, Yasin M, Workineh L, Tiruneh T, Andualem H, Sema M, et al. Evaluation of urine sample for diagnosis of visceral leishmaniasis using rK-39 immunochromatographic test in Northwest Ethiopia. PLoS One. 2022;17(2):e0263696. [DOI:10.1371/journal.pone.0263696]
9. Alvar J, den Boer M, Dagne DA. Towards the elimination of visceral leishmaniasis as a public health problem in east africa: Reflections on an enhanced control strategy and a call for action. Lancet Glob Health. 2021;9(12):e1763-e9. [DOI:10.1016/S2214-109X(21)00392-2]
10. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. [DOI:10.1371/journal.pone.0035671]
11. Kaye P, Scott P. Leishmaniasis: Complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604-15. [DOI:10.1038/nrmicro2608]
12. Martins-Melo FR, Lima Mda S, Ramos AN, Jr., Alencar CH, Heukelbach J. Mortality and case fatality due to visceral leishmaniasis in brazil: A nationwide analysis of epidemiology, trends and spatial patterns. PLoS One. 2014;9(4):e93770. [DOI:10.1371/journal.pone.0093770]
13. Singh OP, Tiwary P, Kushwaha AK, Singh SK, Singh DK, Lawyer P, et al. Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India: A transmission-dynamics study. Lancet Microbe. 2021;2(1):e23-e31. [DOI:10.1016/S2666-5247(20)30166-X]
14. Volpedo G, Pacheco-Fernandez T, Holcomb EA, Zhang W-W, Lypaczewski P, Cox B, et al. Centrin-deficient leishmania mexicana confers protection against new world cutaneous leishmaniasis. NPJ Vaccines. 2022;7(1):32. [DOI:10.1038/s41541-022-00449-1]
15. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, et al. A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121-32. [DOI:10.1007/s40475-021-00232-7]
16. World Health Organization. Leishmaniasis 2023 . Available from: URL : https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis.
17. Malvolti S, Malhame M, Mantel CF, Le Rutte EA, Kaye PM. Human leishmaniasis vaccines: Use cases, target population and potential global demand. PLoS Negl Trop Dis. 2021;15(9):e0009742. [DOI:10.1371/journal.pntd.0009742]
18. Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors. 2016;9(1):277. [DOI:10.1186/s13071-016-1553-y]
19. Abass E, Kang C, Martinkovic F, Semião-Santos SJ, Sundar S, Walden P, et al. Heterogeneity of leishmania donovani parasites complicates diagnosis of visceral leishmaniasis: Comparison of different serological tests in three endemic regions. PloS one. 2015;10(3):e0116408. [DOI:10.1371/journal.pone.0116408]
20. Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries. 2015;9(6):588-96. [DOI:10.3855/jidc.6833]
21. Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol. 2002;9(5):951-8. [DOI:10.1128/CDLI.9.5.951-958.2002]
22. Bangert M, Flores-Chávez MD, Llanes-Acevedo IP, Arcones C, Chicharro C, García E, et al. Validation of rK39 immunochromatographic test and direct agglutination test for the diagnosis of mediterranean visceral leishmaniasis in Spain. PLoS Negl Trop Dis. 2018; 12(3):e0006277. [DOI:10.1371/journal.pntd.0006277]
23. Ejazi SA, Ghosh S, Saha S, Choudhury ST, Bhattacharyya A, Chatterjee M, et al. A multicentric evaluation of dipstick test for serodiagnosis of visceral leishmaniasis in India, Nepal, Sri Lanka, Brazil, Ethiopia and Spain. Sci Rep. 2019; 9(1):9932. [DOI:10.1038/s41598-019-46283-9]
24. Mohapatra S, Samantaray JC, Ghosh A. A comparative study of serum, urine and saliva using rK39 strip for the diagnosis of visceral leishmaniasis. J Arthropod Borne Dis. 2016;10(1):87-91.
25. Yeşilova Y, Aksoy M, Sürücü HA, Uluat A, Ardic N, Yesilova A. Lip leishmaniasis: Clinical characteristics of 621 patients. Int J Crit Illn Inj Sci. 2015;5(4):265-6. [DOI:10.4103/2229-5151.170849]
26. Bezemer JM, Meesters K, Naveda CL, Machado PRL, Calvopiña M, Leeflang MMG, et al. Clinical criteria for mucosal leishmaniasis diagnosis in rural south america: A systematic literature review. PLoS Negl Trop Dis. 2022;16(8):e0010621. [DOI:10.1371/journal.pntd.0010621]
27. Jha MK, Sarode AY, Bodhale N, Mukherjee D, Pandey SP, Srivastava N, et al. Development and characterization of an avirulent leishmania major strain. J Immunol. 2020;204(10):2734-2753. [DOI:10.4049/jimmunol.1901362]
28. Silva CFM, Pinto D, Fernandes PA, Silva AMS. Evolution of acridines and xanthenes as a core structure for the development of antileishmanial agents. Pharmaceuticals (Basel). 2022;15(2). [DOI:10.3390/ph15020148]
29. Santana W, de Oliveira SSC, Ramos MH, Santos ALS, Dolabella SS, Souto EB, et al. Exploring innovative leishmaniasis treatment: Drug targets from pre-clinical to clinical findings. Chem Biodivers. 2021;18(9):e2100336. [DOI:10.1002/cbdv.202100336]
30. Ardic N, Ardic AF, Gunel Z. Leishmaniasis during the increased syrian refugee traffic. Glob J Infect Dis Clin Res. 2018;4(1):013-6. [DOI:10.17352/2455-5363.000020]
31. Khatoon N, Pandey RK, Prajapati VK. Exploring leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep. 2017;7(1):8285. [DOI:10.1038/s41598-017-08842-w]
32. Stauch A, Duerr HP, Dujardin JC, Vanaerschot M, Sundar S, Eichner M. Treatment of visceral leishmaniasis: Model-based analyses on the spread of antimony-resistant L. donovani in Bihar, India. PLoS Negl Trop Dis. 2012;6(12):e1973. [DOI:10.1371/journal.pntd.0001973]
33. Morais RCS, Melo MGN, Goes TC, Pessoa ESR, de Morais RF, Guerra JAO, et al. Clinical-therapeutic follow-up of patients with american cutaneous leishmaniasis caused by different leishmania spp. In Brazil. Exp Parasitol. 2022;240:108338. [DOI:10.1016/j.exppara.2022.108338]
34. Singh OP, Singh B, Chakravarty J, Sundar S. Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infect Dis Poverty. 2016;5:19. [DOI:10.1186/s40249-016-0112-2]
35. Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: Dose and response. J Glob Infect Dis. 2010;2(2):159-66. [DOI:10.4103/0974-777X.62886]
36. Moll H, Berberich C. Dendritic cell-based vaccination strategies: Induction of protective immunity against leishmaniasis. Immunobiology. 2001;204(5):659-66. [DOI:10.1078/0171-2985-00105]
37. Costa-da-Silva AC, Nascimento DO, Ferreira JRM, Guimarães-Pinto K, Freire-de-Lima L, Morrot A, et al. Immune responses in leishmaniasis: An overview. Trop Med Infect Dis. 2022;7(4). [DOI:10.3390/tropicalmed7040054]
38. Pacheco-Fernandez T, Volpedo G, Verma C, Satoskar AR. Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans. 2021;49(1):297-311. [DOI:10.1042/BST20200606]
39. Almeida FS, Vanderley SER, Comberlang FC, Andrade AG, Cavalcante-Silva LHA, Silva EDS, et al. Leishmaniasis: Immune cells crosstalk in macrophage polarization. Trop Med Infect Dis. 2023;8(5). [DOI:10.3390/tropicalmed8050276]
40. Gonçalves-de-Albuquerque SDC, Pessoa ESR, Trajano-Silva LAM, de Goes TC, de Morais RCS, da COCN, et al. The equivocal role of Th17 cells and neutrophils on immunopathogenesis of leishmaniasis. Front Immunol. 2017; 8:1437. [DOI:10.3389/fimmu.2017.01437]
41. Scott P, Novais FO. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Nat Rev Immunol. 2016;16(9):581-92. [DOI:10.1038/nri.2016.72]
42. Faleiro RJ, Kumar R, Hafner LM, Engwerda CR. Immune regulation during chronic visceral leishmaniasis. PLoS Negl Trop Dis. 2014;8(7):e2914. [DOI:10.1371/journal.pntd.0002914]
43. De Luca PM, Macedo AB. Cutaneous leishmaniasis vaccination: A matter of quality. Front Immunol. 2016;7:151. [DOI:10.3389/fimmu.2016.00151]
44. Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A, et al. Revival of Leishmanization and Leishmanin. Front Cell Infect Microbiol. 2021;11:639801. [DOI:10.3389/fcimb.2021.639801]
45. Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, et al. Determinants of innate immunity in visceral leishmaniasis and their implication in vaccine development. Front Immunol. 2021;12:748325. [DOI:10.3389/fimmu.2021.748325]
46. Mohebali M, Nadim A, Khamesipour A. An overview of leishmanization experience: A successful control measure and a tool to evaluate candidate vaccines. Acta Trop. 2019;200:105173. [DOI:10.1016/j.actatropica.2019.105173]
47. Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: Possible approaches for controlling visceral leishmaniasis. Front Immunol. 2014;5:134. [DOI:10.3389/fimmu.2014.00134]
48. Zhang WW, Karmakar S, Gannavaram S, Dey R, Lypaczewski P, Ismail N, et al. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat Commun. 2020;11(1):3461. [DOI:10.1038/s41467-020-17154-z]
49. Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015;7(290):290ra90. [DOI:10.1126/scitranslmed.aaa3043]
50. Carregaro V, Costa DL, Brodskyn C, Barral AM, Barral-Netto M, Cunha FQ, et al. Dual effect of Lutzomyia longipalpis saliva on Leishmania braziliensis infection is mediated by distinct saliva-induced cellular recruitment into BALB/c mice ear. BMC Microbiol. 2013;13:102. [DOI:10.1186/1471-2180-13-102]
51. Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis. 2020;14(1):e0007939. [DOI:10.1371/journal.pntd.0007939]
52. Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, et al. Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis. 2014;8(3):e2751. [DOI:10.1371/journal.pntd.0002751]
53. Marzouki S, Ben Ahmed M, Boussoffara T, Abdeladhim M, Ben Aleya-Bouafif N, Namane A, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84(5):653-61. [DOI:10.4269/ajtmh.2011.10-0598]
54. de Araujo FF, Abdeladhim M, Teixeira C, Hummer K, Wilkerson MD, Ressner R, et al. Immune response profiles from humans experimentally exposed to Phlebotomus duboscqi bites. Front Immunol. 2024;15:1335307. [DOI:10.3389/fimmu.2024.1335307]
55. Srivastava S, Shankar P, Mishra J, Singh S. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors. 2016;9(1):277. [DOI:10.1186/s13071-016-1553-y]
56. Convit J, Ulrich M, Zerpa O, Borges R, Aranzazu N, Valera M, et al. Immunotherapy of american cutaneous leishmaniasis in Venezuela during the period 1990-99. Trans R Soc Trop Med Hyg. 2003;97(4):469-72. [DOI:10.1016/S0035-9203(03)90093-9]
57. Abdellahi L, Iraji F, Mahmoudabadi A, Hejazi SH. Vaccination in leishmaniasis: A review article. Iran Biomed J. 2022;26(1):1-35.
58. Araújo MS, de Andrade RA, Vianna LR, Mayrink W, Reis AB, Sathler-Avelar R, et al. Despite Leishvaccine and Leishmune trigger distinct immune profiles, their ability to activate phagocytes and CD8+ T-cells support their high-quality immunogenic potential against canine visceral leishmaniasis. Vaccine. 2008;26(18):2211-24. [DOI:10.1016/j.vaccine.2008.02.044]
59. Sharifi I, FeKri AR, Aflatonian MR, Khamesipour A, Nadim A, Mousavi MR, et al. Randomised vaccine trial of single dose of killed Leishmania major plus bcg against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet. 1998;351(9115):1540-3. [DOI:10.1016/S0140-6736(98)09552-X]
60. Mahmoodi M, Khamesipour A, Dowlati Y, Rafati S, Momeni AZ, Emamjomeh M, et al. Immune response measured in human volunteers vaccinated with autoclaved Leishmania major vaccine mixed with low dose of BCG. Clin Exp Immunol. 2003;134(2):303-8. [DOI:10.1046/j.1365-2249.2003.02299.x]
61. Mayrink W, Da Costa C, Magalhães P, Melo M, Dias M, Lima AO, et al. A field trial of a vaccine against American dermal leishmaniasis. 1979;73(4):385-7. [DOI:10.1016/0035-9203(79)90159-7]
62. Mayrink W, Magalhães PA, Dias M, Da Costa CA, Melo MN, Lima AO. Responses to montenegro antigen after immunization with killed leishmania promastigotes. Trans R Soc Trop Med Hyg. 1978;72(6):676. [DOI:10.1016/0035-9203(78)90041-X]
63. Mayrink W, Williams P, Da Costa C, Magalhães P, Melo M, Dias M, et al. An experimental vaccine against American dermal leishmaniasis: experience in the State of Espírito Santo, Brazil. Ann Trop Med Parasitol. 1985;79(3):259-69. [DOI:10.1080/00034983.1985.11811917]
64. Mayrink W, Santos GC, Toledo Vde P, Guimaraes TM, Machado-Coelho GL, Genaro O, et al. Vaccination of C57BL/10 mice against cutaneous Leishmaniasis using killed promastigotes of different strains and species of Leishmania. Rev Soc Bras Med Trop. 2002;35(2):125-32. [DOI:10.1590/S0037-86822002000200001]
65. Bahar K, Dowlati Y, Shidani B, Alimohammadian MH, Khamesipour A, Ehsasi S, et al. Comparative safety and immunogenicity trial of two killed Leishmania major vaccines with or without BCG in human volunteers. Clin Dermatol. 1996;14(5):489-95. [DOI:10.1016/0738-081X(96)00071-5]
66. Vélez ID, del Pilar Agudelo S, Arbelaez MP, Gilchrist K, Robledo SM, Puerta JA, et al. Safety and immunogenicity of a killed Leishmania (L.) amazonensis vaccine against cutaneous leishmaniasis in Colombia: A randomized controlled trial. Trans R Soc Trop Med Hyg. 2000;94(6):698-703. [DOI:10.1016/S0035-9203(00)90239-6]
67. Llanos-Cuentas A, Calderón W, Cruz M, Ashman JA, Alves FP, Coler RN, et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine. 2010;28(46):7427-35. [DOI:10.1016/j.vaccine.2010.08.092]
68. Chakravarty J, Kumar S, Trivedi S, Rai VK, Singh A, Ashman JA, et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine. 2011;29(19):3531-7. [DOI:10.1016/j.vaccine.2011.02.096]
69. Phase 1, randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and immunogenicity of the leish-f2 + mpl-se vaccine in combination with ssg in the treatment of patients with pkdl. 2009. Available from: URL : https://clinicaltrials.gov/study/NCT00982774.
70. A phase 2, randomized, open-label, controlled study to evaluate the efficacy, safety, and immunogenicity of the leish-f2 + mpl-se vaccine in the treatment of patients with cutaneous leishmaniasis. 2009. Available from: URL : https://clinicaltrials.gov/study/NCT01011309.
71. Coler RN, Duthie MS, Hofmeyer KA, Guderian J, Jayashankar L, Vergara J, et al. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3+GLA-SE. Clin Transl Immunology. 2015;4(4):e35. [DOI:10.1038/cti.2015.6]
72. A phase 1 clinical trial to evaluate the safety, tolerability, and immunogenicity of the vaccine candidates leish-f3 + gla-se, leish-f3 + mpl-se, and leish-f3 + se in healthy adult subjects. 2012. Available from: URL : https://clinicaltrials.gov/study/NCT01751048.
73. Osman M, Mistry A, Keding A, Gabe R, Cook E, Forrester S, et al. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. PLOS Negl Trop Dis. 2017;11(5):e0005527. [DOI:10.1371/journal.pntd.0005527]
74. Younis BM, Osman M, Khalil EAG, Santoro F, Furini S, Wiggins R, et al. Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan. Mol Ther. 2021;29(7):2366-77. [DOI:10.1016/j.ymthe.2021.03.020]
75. Volpedo G, Bhattacharya P, Gannavaram S, Pacheco-Fernandez T, Oljuskin T, Dey R, et al. The history of live attenuated centrin gene-deleted leishmania vaccine candidates. Pathogens. 2022; 11(4):431. [DOI:10.3390/pathogens11040431]
76. Badiee A, Khamesipour A, Samiei A, Soroush D, Shargh VH, Kheiri MT, et al. The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen. Exp Parasitol. 2012;132(4):403-9. [DOI:10.1016/j.exppara.2012.09.001]
77. Firouzmand H, Sahranavard M, Badiee A, Khamesipour A, Alavizadeh SH, Samiei A, et al. The role of LPD-nanoparticles containing recombinant major surface glycoprotein of Leishmania (rgp63) in protection against leishmaniasis in murine model Immunopharmacol Immunotoxicol. 2018;40(1):72-82. [DOI:10.1080/08923973.2017.1407941]
78. Samiei A, Tamadon AM, Samani SM, Manolios N, Sarvestani EK. Engraftment of plasma membrane vesicles into liposomes: A new method for designing of liposome-based vaccines. Iran J Basic Med Sci. 2014;17(10):772-8.
79. Danesh-Bahreini MA, Shokri J, Samiei A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohammadi-Samani S. Nanovaccine for leishmaniasis: Preparation of chitosan nanoparticles containing leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine. 2011;6:835-42. [DOI:10.2147/IJN.S16805]
80. Ahmed SB, Bahloul C, Robbana C, Askri S, Dellagi K. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine. 2004;22(13-14):1631-9. [DOI:10.1016/j.vaccine.2003.10.046]
81. Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect Immun. 2008; 76(3): 1003-1015. [DOI:10.1128/IAI.00611-07]
82. Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, et al. Leishmania immunity: Advancing immunotherapy and vaccine development. Microorganisms. 2020;8(8):1201. [DOI:10.3390/microorganisms8081201]
83. Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG. Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun.. 2007;75(9):4648-54. [DOI:10.1128/IAI.00394-07]
84. Daneshvar H, Namazi MJ, Kamiabi H, Burchmore R, Cleaveland S, Phillips S. Gentamicin-attenuated Leishmania infantum vaccine: Protection of dogs against canine visceral leishmaniosis in endemic area of southeast of Iran. PLoS Negl Trop Dis. 2014;8(4):e2757. [DOI:10.1371/journal.pntd.0002757]
85. Podešvová L, Leštinová T, Horáková E, Lukeš J, Volf P, Yurchenko V. Suicidal leishmania. Pathogens. 2020; 9(2):79. [DOI:10.3390/pathogens9020079]
86. Muyombwe A, Olivier M, Ouellette M, Papadopoulou B. Selective killing of leishmania amastigotes expressing a thymidine kinase suicide gene. Exp Parasitol. 1997;85(1):35-42. [DOI:10.1006/expr.1996.4115]
87. Sharma R, Avendaño Rangel F, Reis-Cunha JL, Marques LP, Figueira CP, Borba PB, et al. Targeted deletion of centrin in Leishmania braziliensis using CRISPR-Cas9-based editing. Front Cell Infect Microbiol. 2021;11:790418. [DOI:10.3389/fcimb.2021.790418]
88. Carrión J, Folgueira C, Soto M, Fresno M, Requena JM. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasit Vectors. 2011;4:150. [DOI:10.1186/1756-3305-4-150]
89. Gannavaram S, Dey R, Avishek K, Selvapandiyan A, Salotra P, Nakhasi HL. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications. Front Immunol. 2014;5:241. [DOI:10.3389/fimmu.2014.00241]
90. Ghosh A, Labrecque S, Matlashewski G. Protection against Leishmania donovani infection by DNA vaccination: Increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine. 2001;19(23-24):3169-78. [DOI:10.1016/S0264-410X(01)00023-8]
91. Papadopoulou B, Roy G, Breton M, Kündig C, Dumas C, Fillion I, et al. Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun. 2002;70(1):62-8. [DOI:10.1128/IAI.70.1.62-68.2002]
92. Silvestre R, Cordeiro-Da-Silva A, Santarém N, Vergnes B, Sereno D, Ouaissi A. SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol. 2007;179(5):3161-70. [DOI:10.4049/jimmunol.179.5.3161]
93. Montoya A, Checa R, Marino V, Gálvez R, Portero M, De Mari K, et al. Antibodies elicited by the CaniLeish® vaccine: long-term clinical follow-up study of dogs in Spain.. Parasitol Res. 2021;120(4):1471-9. [DOI:10.1007/s00436-021-07091-1]
94. Velez R, Gállego M. Commercially approved vaccines for canine leishmaniosis: A review of available data on their safety and efficacy. Trop Med Int Health. 2020;25(5):540-57. [DOI:10.1111/tmi.13382]
95. Mutiso JM, Macharia JC, Kiio MN, Ichagichu JM, Rikoi H, Gicheru MM. Development of leishmania vaccines: Predicting the future from past and present experience. J Biomed Res. 2013;27(2):85-102. [DOI:10.7555/JBR.27.20120064]
96. Aunguldee T, Gerdprasert O, Tangteerawatana P, Jariyapongskul A, Leelayoova S, Wongsatayanon BT. Immunogenicity and potential protection of DNA vaccine of Leishmania martiniquensis against leishmania infection in mice. J Infect Dev Ctries. 2021;15(9):1328-38. [DOI:10.3855/jidc.14472]
97. Rafati S, Zahedifard F, Azari MK, Taslimi Y, Taheri T. Leishmania infantum: prime boost vaccination with C-terminal extension of cysteine proteinase type I displays both type 1 and 2 immune signatures in BALB/c mice. Exp Parasitol. 2008;118(3):393-401. [DOI:10.1016/j.exppara.2007.10.004]
98. Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, et al. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - a review. Biomed Pharmacother. 2021;141:111920. [DOI:10.1016/j.biopha.2021.111920]
99. Margaroni M, Agallou M, Tsanaktsidou E, Kammona O, Kiparissides C, Karagouni E. Immunoinformatics approach to design a multi-epitope nanovaccine against leishmania parasite: Elicitation of cellular immune responses. Vaccines (Basel). 2023;11(2):304. [DOI:10.3390/vaccines11020304]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: ندارد


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4623