[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Editorial Board::
Editorial Policy::
For Authors::
For Reviewers::
Articles archive::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: In Press ::
Back to the articles list Back to browse issues page
Preparation and Evaluation of Microbial Resistance of Nortriptyline Mouthwash Based on Pharmaceutical Pharmacopoeia Standards with the Aim of Application in Oral Mucositis
Taher Sadeghian , Saeideh Allahyari *
Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran , s.allahyari@arums.ac.ir
Keywords: Mouthwash, Nortriptyline, Microbial resistance, adsorption
Full-Text [PDF 743 kb]   (91 Downloads)    
Type of Study: article | Subject: فارماکولوژی
Received: 2024/03/6 | Accepted: 2024/05/9
References
1. Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15(1):71. [DOI:10.1186/s12935-015-0221-1] [PMID] []
2. Allahyari S, Zahednezhad F, Khatami M, Hashemzadeh N, Zakeri-Milani P, Trotta F. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. J Drug Deliv Technol. 2022;67:102931. [DOI:10.1016/j.jddst.2021.102931]
3. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: A link between cancer genetics and chemotherapy. Cell. 2002;108(2):153-164. [DOI:10.1016/S0092-8674(02)00625-6] [PMID]
4. Allen G, Logan R, Revesz T, Keefe D, Gue S. The prevalence and investigation of risk factors of oral mucositis in a pediatric oncology inpatient population; a prospective study. J Pediatr Hematol Oncol. 2018;40(1):15-21. [DOI:10.1097/MPH.0000000000000970] [PMID]
5. Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P, et al. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm. 2020;581:119269. [DOI:10.1016/j.ijpharm.2020.119269] [PMID]
6. Kakoei S, Pardakhty A, Hashemipour MA, Larizadeh H, Kalantari B, Tahmasebi E. Comparison the pain relief of amitriptyline mouthwash with benzydamine in oral mucositis. J Dent (Shiraz). 2018;19(1):34-40.
7. Naidu MU, Ramana GV, Rani PU, Mohan IK, Suman A, Roy P. Chemotherapy-induced and/or radiation therapy-induced oral mucositis--complicating the treatment of cancer. Neoplasia. 2004;6(5):423-431. [DOI:10.1593/neo.04169] [PMID] []
8. Pulito C, Cristaudo A, Porta C, Zapperi S, Blandino G, Morrone A, et al. Oral mucositis: the hidden side of cancer therapy. J Exp Clin Cancer Res. 2020;39(1):210. [DOI:10.1186/s13046-020-01715-7] [PMID] []
9. Ala S, Zamani N, Akbari J, Salehifar E, Janbabai G, Koulaeinejad N. Efficacy of gabapentin mouthwash in managing oral mucositis pain in patients undergoing chemotherapy: a prospective, randomised, double-blind, controlled clinical trial. Scott Med J. 2020;65(1):12-18. [DOI:10.1177/0036933019897237] [PMID]
10. Sio TT, Le-Rademacher JG, Leenstra JL, Loprinzi CL, Rine G, Curtis A, et al. Effect of doxepin mouthwash or diphenhydramine-lidocaine-antacid mouthwash vs placebo on radiotherapy-related oral mucositis pain: The alliance A221304 randomized clinical trial. JAMA. 2019;321(15):1481-1490. [DOI:10.1001/jama.2019.3504] [PMID] []
11. Pérez-Nicolás C, Pecci-Lloret MP, Guerrero-Gironés J. Use and efficacy of mouthwashes in elderly patients: A systematic review of randomized clinical trials. Ann Anat. 2023;246:152026. [DOI:10.1016/j.aanat.2022.152026] [PMID]
12. Epstein JB, Epstein JD, Epstein MS, Oien H, Truelove EL. Doxepin rinse for management of mucositis pain in patients with cancer: one week follow-up of topical therapy. Spec Care Dentist. 2008;28(2):73-77. [DOI:10.1111/j.1754-4505.2008.00015.x] [PMID]
13. Cerchietti LC, Navigante AH, Körte MW, Cohen AM, Quiroga PN, Villaamil EC, et al. Potential utility of the peripheral analgesic properties of morphine in stomatitis-related pain: a pilot study. Pain. 2003;105(1-2):265-273. [DOI:10.1016/S0304-3959(03)00227-6] [PMID]
14. Sarvizadeh M, Hemati S, Meidani M, Ashouri M, Roayaei M, Shahsanai A. Morphine mouthwash for the management of oral mucositis in patients with head and neck cancer. Adv Biomed Res. 2015;4:44. [DOI:10.4103/2277-9175.151254] [PMID] []
15. Vayne-Bossert P, Escher M, de Vautibault CG, Dulguerov P, Allal A, Desmeules J, et al. Effect of topical morphine (mouthwash) on oral pain due to chemotherapy- and/or radiotherapy-induced mucositis: a randomized double-blinded study. J Palliat Med. 2010;13(2):125-128. [DOI:10.1089/jpm.2009.0195] [PMID]
16. Leenstra JL, Miller RC, Qin R, Martenson JA, Dornfeld KJ, Bearden JD, et al. Doxepin rinse versus placebo in the treatment of acute oral mucositis pain in patients receiving head and neck radiotherapy with or without chemotherapy: a phase III, randomized, double-blind trial (NCCTG-N09C6 [Alliance]). J Clin Oncol. 2014;32(15):1571-1577. [DOI:10.1200/JCO.2013.53.2630] [PMID] []
17. Epstein JB, Epstein JD, Epstein MS, Oien H, Truelove EL. Oral doxepin rinse: The analgesic effect and duration of pain reduction in patients with oral mucositis due to cancer therapy. Anesth Analg. 2006; 103(2):465-70. [DOI:10.1213/01.ane.0000223661.60471.78] [PMID]
18. Brennan PA, Lewthwaite R, Sakthithasan P, McGuigan S, Donnelly O, Alam P, et al. Diclofenac mouthwash as a potential therapy for reducing pain and discomfort in chemo-radiotherapy-induced oral mucositis. J Oral Pathol Med. 2020;49(9):956-959. [DOI:10.1111/jop.13001] [PMID]
19. Karunakaran A, Vanitha S, Swarna K, Sudha S, Sangeetha V, Munusamy J, et al. Development and validation of UV-spectroscopic method for the estimation of nortriptyline hydrochloride in bulk and in tablet dosage form. Int J Pharm H. Care Res. 2018;6(1):30-37
20. Maršálek R, Švidrnoch M. The adsorption of amitriptyline and nortriptyline on activated carbon, diosmectite and titanium dioxide. Environ Chall. 2020;1:100005. [DOI:10.1016/j.envc.2020.100005]
21. Indrayanto G. Application of accuracy and precision evaluations based on the current United States and Indonesian pharmacopoeias: A critical review. Makara J Sci. 2022;26:227-237. [DOI:10.7454/mss.v26i4.1343]
22. Dobreva V, Spasov H, Dobrev G. Ethanol, sugar and potassium sorbate effects on Zygosacharomyces bailii growth in white wine using response surface methodology. J Hyg Eng Des. 2021:71-76
23. Nisticò R. Polyethylene terephthalate (PET) in the packaging industry. Polym Test. 2020;90:106707. [DOI:10.1016/j.polymertesting.2020.106707]
24. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: Importance and enhancement techniques. Int Sch Res Notices. 2012;2012:195727. [DOI:10.5402/2012/195727] [PMID] []
25. Kishani S, Vilaplana F, Ruda M, Hansson P, Wågberg L. Influence of solubility on the adsorption of different xyloglucan fractions at cellulose-water interfaces. Biomacromolecules. 2020;21(2):772-782. [DOI:10.1021/acs.biomac.9b01465] [PMID]
26. Fukazawa T, Yamazaki Y, Miyamoto Y. Reduction of non-specific adsorption of drugs to plastic containers used in bioassays or analyses. J Pharmacol Toxicol Methods. 2010;61(3):329-333. [DOI:10.1016/j.vascn.2009.12.005] [PMID]
27. Palmgrén JJ, Mönkkönen J, Korjamo T, Hassinen A, Auriola S. Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions. Eur J Pharm Biopharm. 2006;64(3):369-378. [DOI:10.1016/j.ejpb.2006.06.005] [PMID]
28. Primc G, Mozetič M. Hydrophobic recovery of plasma-hydrophilized polyethylene terephthalate polymers. Polymers (Basel). 2022;14(12):2496. [DOI:10.3390/polym14122496] [PMID] []
29. Chen Y, Liang J, Liu L, Lu X, Deng J, Pozdnyakov IP, et al. Photosensitized degradation of amitriptyline and its active metabolite nortriptyline in aqueous fulvic acid solution. J Environ Qual. 2017;46(5):1081-1087. [DOI:10.2134/jeq2017.05.0181] [PMID]
30. Hale JL. Nortriptyline hydrochloride. In: Florey K, editor. Analytical Profiles of Drug Substances. 1: Academic Press; 1972. p. 233-247. [DOI:10.1016/S0099-5428(08)60298-1]
31. Wagstaff A, Petrie B. Enhanced desorption of fluoxetine from polyethylene terephthalate microplastics in gastric fluid and sea water. Environ Chem Lett. 2022;20(2):975-982. [DOI:10.1007/s10311-022-01405-0]
32. Vranić E, Lacević A, Mehmedagić A, Uzunović A. Formulation ingredients for toothpastes and mouthwashes. Bosn J Basic Med Sci. 2004;4(4):51-58. [DOI:10.17305/bjbms.2004.3362] [PMID] []
33. Aalto TR, Firman MC, Rigler NE. p-Hydroxybenzoic acid esters as preservatives. I. Uses, antibacterial and antifungal studies, properties and determination. J Am Pharm Assoc Am Pharm Assoc. 1953;42(8):449-457. [DOI:10.1002/jps.3030420802]
34. Zhou X, Qiao K, Wu H, Zhang Y. The impact of food additives on the abundance and composition of gut microbiota. Molecules. 2023;28(2):631. [DOI:10.3390/molecules28020631] [PMID] []
35. Croitoru M, Miklos A, Erzsebet F, Coman MM, Fülöp I. Evaluation of the ingestion of parabens during the use of dental care products by healthy human volunteers.Farmacia. 2016;64:594-598.
36. Brookes Z, McGrath C, McCullough M. Antimicrobial mouthwashes: An overview of mechanisms-what do we still need to know? Int Dent J. 2023;73:64-68. [DOI:10.1016/j.identj.2023.08.009] [PMID] []
37. Neves ER, Schäfer S, Phillips A, Canejo J, Macedo MF. Antifungal effect of different methyl and propyl paraben mixtures on the treatment of paper biodeterioration. Int Biodeterior. 2009;63(3):267-72. [DOI:10.1016/j.ibiod.2008.07.011]
38. Stjepanovic AN, Todorovic NB, Tesic TZ, Komazec ZS, Canji-Panic JM, Lalic-Popovic MN. Pharmaceutical excipients with potential to cause adverse effects in paediatric nasal medicines. Regul Toxicol Pharmacol. 2022;133:105225. [DOI:10.1016/j.yrtph.2022.105225] [PMID]
39. Miceli MH, Bernardo SM, Ku TS, Walraven C, Lee SA. In vitro analyses of the effects of heparin and parabens on Candida albicans biofilms and planktonic cells. Antimicrob Agents Chemother. 2012;56(1):148-153. [DOI:10.1128/AAC.05061-11] [PMID] []
40. Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother. 2013;57(1):74-82. [DOI:10.1128/AAC.01599-12] [PMID] []
41. Chauhan NM, Raut JS, Karuppayil SM. A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses. 2011;54(6):697-703. [DOI:10.1111/j.1439-0507.2010.02002.x] [PMID]
42. Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S, Antar OS, et al. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun. 2006;74(7):3804-3816. [DOI:10.1128/IAI.00161-06] [PMID] []
43. Chirife J, Fontana AJ. Introduction: Historical highlights of water activity research.In: Barbosa-Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP, editors. Water Activity in Foods: Fundamentals and Applications, Second Edition. John Wiley & Sons, Inc. 2020:1-11. [DOI:10.1002/9781118765982.ch1]
44. Syamaladevi RM, Tang J, Villa‐Rojas R, Sablani S, Carter B, Campbell G. Influence of water activity on thermal resistance of microorganisms in low‐moisture foods: a review. Compr Rev Food Sci Food Saf. 2016;15(2):353-70. [DOI:10.1111/1541-4337.12190] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.ARUMS.REC.1402.005


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.07 seconds with 39 queries by YEKTAWEB 4623