[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
indexing and abstracting::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 25, Issue 3 (Autumn 2025) ::
J Ardabil Univ Med Sci 2025, 25(3): 348-366 Back to browse issues page
Accelerating Wound Healing using a Polycaprolactone-Based Wound Dressing Containing Silver-coated Carbon Quantum Dots: In Vitro and In Vivo Studies
Tannaz Afshin , Saber Zahri * , Asadolah Asadi , Arash Abdolmaleki , Habibolah Eskandari
Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran , zahri@uma.ac.ir
Abstract:   (120 Views)
Background: Wound healing and tissue regeneration remain major clinical challenges, particularly in chronic conditions such as diabetes, where impaired angiogenesis leads to delayed recovery. This study aimed to evaluate the potential of a nanocomposite composed of silver-incorporated carbon quantum dots (Ag-CQDs) to promote wound healing.
Methods: A novel bioactive wound dressing was developed by synthesizing Ag-CQDs through the hydrothermal method, followed by ionic crosslinking with Ag ions, and incorporating them into electrospun polycaprolactone (PCL) scaffolds. The biological effects of the nanocomposite were assessed through both in vitro and in vivo experiments.
Results: Structural and surface characterization confirmed the successful synthesis and modification of the quantum dots. In vitro scratch assays using PC12 cells demonstrated a significant enhancement in cell migration after Ag-CQD treatment. In vivo studies in a mouse wound model revealed accelerated healing and tissue regeneration, characterized by enhanced epithelialization and collagen deposition in the Ag-CQD-treated groups compared with controls.
Conclusion: The Ag-CQD nanocomposite significantly accelerated wound healing and tissue regeneration in both in vitro and in vivo models, highlighting its potential as a promising wound dressing material.

 
Keywords: Carbon Quantum Dots, PCL Scaffold, Silver Nanoparticles, Wound Healing
Full-Text [PDF 1019 kb]   (56 Downloads)    
Type of Study: article | Subject: Biotechnology
Received: 2025/08/27 | Accepted: 2025/10/6 | Published: 2025/12/24
References
1. Karahaliloglu Z, Kilicay E, Denkbas EB. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material. Artif Cells Nanomed Biotechnol. 2017; 45(6):1172-85. [DOI:10.1080/21691401.2016.1203796] [PMID]
2. Radhakumary C, Antonty M, Sreenivasan K. Drug loaded thermoresponsive and cytocompatible chitosan-based hydrogel as a potential wound dressing. Carbohydr Polym. 2011; 83(2):705-13. [DOI:10.1016/j.carbpol.2010.08.042]
3. Talikowska M, Fu X, Lisak G. Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens Bioelectron. 2019; 135:50-63. [DOI:10.1016/j.bios.2019.04.001] [PMID]
4. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. Design, fabrication and characterization of PCL electrospun scaffolds-a review. J Mater Chem. 2011; 21(26):9419-53. [DOI:10.1039/c0jm04502k]
5. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005; 72(1):156-65. [DOI:10.1002/jbm.b.30128] [PMID]
6. Bui VKH, Park D, Lee YC. Chitosan combined with ZnO, TiO₂ and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers (Basel). 2017; 9(1):21. [DOI:10.3390/polym9010021] [PMID] []
7. Kang K, Lim DH, Choi IH, Kang T, Lee K, Moon EY, et al. Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett. 2011; 205(3):227-34. [DOI:10.1016/j.toxlet.2011.05.1033]
8. Yahya MA, Al-Nefeiy FA, Bawazir EA. Therapeutic potential applications of silver nanoparticles synthesized from Cucurbita maxima for wound healing in diabetic male albino rats. Afr J Biomed Res. 2024; 27(3):543-59. [DOI:10.53555/AJBR.v27i3.1760]
9. Hartmann CA, Rode H, Kramer B. Acticoat™ stimulates inflammation, but does not delay healing, in acute full-thickness excisional wounds. Int Wound J. 2016; 13(6):1344-48. [DOI:10.1111/iwj.12525] [PMID] []
10. Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol. 2016; 205(6):603-13. [DOI:10.1007/s00430-016-0477-7] [PMID] []
11. Shereema RM, Sruthi TV, Kumar VS, Rao TP, Shankar SS. Angiogenic profiling of synthesized carbon quantum dots. Biochemistry. 2015; 54(41):6352-56. [DOI:10.1021/acs.biochem.5b00781] [PMID]
12. Devi P, Saini S, Kim KH. The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron. 2019; 141:111158. [DOI:10.1016/j.bios.2019.02.059]
13. Ren X, Liang W, Wang P, Bunker CE, Coleman M, Teisl LR, et al. A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon. 2019; 141:553-60. [DOI:10.1016/j.carbon.2018.09.085]
14. Dang DK, Sundaram C, Ngo YL, Chung JS, Kim EJ, Hur SH. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag⁺ detection in aqueous solution. Sens Actuators B Chem. 2018; 255:3284-91. [DOI:10.1016/j.snb.2017.09.155]
15. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. Adv Drug Deliv Rev. 2011; 63(3):198-205. [DOI:10.1016/j.jconrel.2011.06.001] [PMID] []
16. De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 2013; 3(22):8286-90. [DOI:10.1039/c3ra00088e]
17. Kazeminava F, Javanbakht S, Nouri M, Gholizadeh P, Nezhad-Mokhtari P, Ganbarov K, et al. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng. 2022; 16(1):36. [DOI:10.1186/s13036-022-00318-4] []
18. Abed EM, Yazdian F, Sepahi AA, Rasekh B. Synthesis and evaluation of PCL/chitosan/CQD-Fe magnetic nanocomposite for wound healing: emphasis on gene expression. Eng Life Sci. 2025; 25(1):e202400038. [DOI:10.1002/elsc.202400038] [PMID] []
19. Saikia M, Das T, Saikia BK. A novel rapid synthesis of highly stable silver nanoparticle/carbon quantum dot nanocomposites derived from low-grade coal feedstock. New J Chem. 2022; 46(1):309-21. [DOI:10.1039/D1NJ04039A]
20. Yang H, Long Y, Li H, Pan S, Liu H, Yang J, et al. Carbon dots synthesized by hydrothermal process via sodium citrate and NH₄HCO₃ for sensitive detection of temperature and sunset yellow. J Colloid Interface Sci. 2018; 516:192-201. [DOI:10.1016/j.jcis.2018.01.054] [PMID]
21. Kaur R, Singh J, Kathuria D, Matharu AS. Waste biomass-derived CQDs and Ag-CQDs as a sensing platform for Hg²⁺ ions. Sustain Chem Pharm. 2022; 29:100813. [DOI:10.1016/j.scp.2022.100813]
22. Zhang B, Zhang H, Hu Y, Tian L, Cheng H, Wang Y, et al. Decellularized umbilical cord wrapped with conductive hydrogel for peripheral nerve regeneration. Aggregate. 2024;e674. [DOI:10.1002/agt2.674]
23. Yang X, Lin G, Chen Y, Lei X, Ou Y, Yan Y, et al. Chlorquinaldol alleviates lung fibrosis in mice by inhibiting fibroblast activation through targeting methionine synthase reductase. ACS Cent Sci. 2024; 10(9):1789-1802. [DOI:10.1021/acscentsci.4c00798] [PMID] []
24. Zhang Y, Ullah I, Zhang W, Ou H, Domingos M, Gloria A, et al. Preparation of electrospun nanofibrous polycaprolactone scaffolds using nontoxic ethylene carbonate and glacial acetic acid solvent system. J Appl Polym Sci. 2020; 137(8):48387. [DOI:10.1002/app.48387]
25. Lu YY, Li NL, Jia LP, Ma RN, Jia WL, Tao XQ, et al. The synthesis of Ag@CQDs composite and its electrochemiluminescence application for the highly selective and sensitive detection of chloride. J Electroanal Chem. 2016; 781:114-19. [DOI:10.1016/j.jelechem.2016.05.045]
26. Jin JC, Xu ZQ, Zou HF, Zhou ZQ, Yang QQ, Wang BB, et al. Carbon dots reduced and stabilized silver nanoclusters: synthesis and formation mechanisms. RSC Adv. 2016; 6(80):76989-95. [DOI:10.1039/C6RA14233H]
27. Alhokbany N, Althagafi H, Ahmed J, Alshehri SM. Synthesis and characterization of carbon dots nanoparticles for detection of ascorbic acid. Mater Lett. 2023; 351:134992. [DOI:10.1016/j.matlet.2023.134992]
28. Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, et al. Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg²⁺ ions detection. J Hazard Mater. 2017; 322:430-36. [DOI:10.1016/j.jhazmat.2016.10.034] [PMID]
29. Shabbir H, Csapó E, Wojnicki M. Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics. 2023; 11(6):262. [DOI:10.3390/inorganics11060262]
30. Zhang Y, Goncalves H, da Silva JC, Geddes CD. Metal-enhanced photoluminescence from carbon nanodots. Chem Commun (Camb). 2011; 47(18):5313-15. [DOI:10.1039/c0cc03832f] [PMID]
31. Li C, Zhu Y, Zhang X, Yang X, Li C. Metal-enhanced fluorescence of carbon dots adsorbed Ag@SiO₂ core-shell nanoparticles. RSC Adv. 2012; 2(5):1765-68. [DOI:10.1039/c2ra01032a]
32. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci. 2004; 273(2):381-87. [DOI:10.1016/j.jcis.2004.02.001] [PMID]
33. Chiono V, Vozzi G, D'Acunto M, Brinzi S, Domenici C, Vozzi F, et al. Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications. Mater Sci Eng C. 2009; 29(7):2174-87. [DOI:10.1016/j.msec.2009.04.020]
34. Can-Herrera LA, Oliva AI, Dzul-Cervantes MA, Pacheco-Salazar OF, Cervantes-Uc JM. Morphological and mechanical properties of electrospun polycaprolactone scaffolds: effect of applied voltage. Polymers (Basel). 2021; 13(4):662. [DOI:10.3390/polym13040662] [PMID] []
35. Farghaly Aly U, Abou-Taleb HA, Abdellatif AA, Sameh Tolba N. Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug Des Devel Ther. 2019; 13:1567-80. [DOI:10.2147/DDDT.S198413] [PMID] []
36. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017; 190:64-83. [DOI:10.1016/j.imlet.2017.07.015] [PMID]
37. Bhagavathy S, Kancharla S. Wound healing and angiogenesis of silver nanoparticle from Azadirachta indica in diabetes induced mice. Int J Herb Med. 2016; 4(5):24-29.
38. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017; 12:5421-31. [DOI:10.2147/IJN.S138624] [PMID] []
39. Pirsaheb M, Asadi A, Sillanpää M, Farhadian N. Application of carbon quantum dots to increase the activity of conventional photocatalysts: a systematic review. J Mol Liq. 2018; 271:857-71. [DOI:10.1016/j.molliq.2018.09.064]
40. Ramezani M, Alibolandi M, Nejabat M, Charbgoo F, Taghdisi SM, Abnous K. Graphene-based hybrid nanomaterials for biomedical applications. Biomed Appl Graphene 2D Nanomater. 2019; 1:119-41. [DOI:10.1016/B978-0-12-815889-0.00006-4]
41. Romoser AA, Chen PL, Berg JM, Seabury C, Ivanov I, Criscitiello MF, et al. Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Mol Immunol. 2011; 48(12-13):1349-59. [DOI:10.1016/j.molimm.2011.02.009] [PMID] []
42. Li P, Han F, Cao W, Zhang G, Li J, Zhou J, et al. Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair. Appl Mater Today. 2020; 19:100601. [DOI:10.1016/j.apmt.2020.100601]
43. Abolghasemzade S, Pourmadadi M, Rashedi H, Yazdian F, Kianbakht S, Navaei-Nigjeh M. PVA-based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model. J Mater Chem B. 2021; 9(3):658-76. [DOI:10.1039/D0TB01747G] [PMID]
44. Lu S, Chen Z, Tu H, Liu H, Liu Y, Chen S, et al. Multifunctional carbon quantum dots decorated self-healing hydrogel for highly effective treatment of superbug infected wounds. Chem Eng J. 2024; 480:148218. [DOI:10.1016/j.cej.2023.148218]
45. Bahramzadeh S, Zahri S, Latifi Navid, Eskandari H, Fahmi A. The effect of carbon quantum dots synthesized from ammonium carbonate and sodium citrate on the HUVEC cell line. Proceedings of the 5th International Conference on Biology and Earth Sciences. 2022 Dec. 310-317, Hamedan, Iran. Tehran: Civilica, 2022. (Full text in Persian)
46. Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers (Basel). 2020; 12(9):2010. [DOI:10.3390/polym12092010] [PMID] []
47. Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, et al. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology. 2021; 19(1):1-21. [DOI:10.1186/s12951-020-00755-7] [PMID] []
48. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014; 4(47):24777-85. [DOI:10.1039/c4ra02450h]
49. Hao D, Zhang G, Gong Y, Ma Z. Development and biological evaluation of cerium oxide loaded polycaprolactone dressing on cutaneous wound healing in nursing care. Mater Lett. 2020; 265:127401. [DOI:10.1016/j.matlet.2020.127401]
50. Hasanpour F, Zahri S, Abdolmaleki A, Asadi A. Activation of the TrkA/Ras-MAPK/ERK signaling pathway via carbon quantum dot mimetics for enhanced peripheral nerve regeneration. Neurochem Res. 2025; 50(4):1-22. [DOI:10.1007/s11064-025-04470-3] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR. UMA.REC.1403.035


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Afshin T, Zahri S, Asadi A, Abdolmaleki A, Eskandari H. Accelerating Wound Healing using a Polycaprolactone-Based Wound Dressing Containing Silver-coated Carbon Quantum Dots: In Vitro and In Vivo Studies. J Ardabil Univ Med Sci 2025; 25 (3) :348-366
URL: http://jarums.arums.ac.ir/article-1-2535-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 25, Issue 3 (Autumn 2025) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 41 queries by YEKTAWEB 4623