[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 18, Issue 1 (spring 2018) ::
J Ardabil Univ Med Sci 2018, 18(1): 34-42 Back to browse issues page
Effect of Zinc Oxide Nanoparticles on Blood Lipid Profile in Wistar Male Rats
Pirooz Pour Mohammad , Reza Alipanah-Moghadam * , Firooz Amani , Ali Nemati , Vadood Malekzadeh
Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran , alipanahreza9@gmail.com
Abstract:   (6616 Views)
Background & objectives: Due to the widespread use of zinc oxide nanoparticles (ZnO-NPs) and their possible unwanted effects in biological environments, we made an attempt to investigate the effect of ZnO-NPs on the blood lipid profile.
Methods: In this study, 24 male Wistar rats were used. The rats were randomly divided into three groups: control group, the group receiving ZnO-NPs at 25 mg/kg (ZnO-NPs 25 mg/kg) and the group receiving ZnO-NPs at 50 mg/kg (ZnO-NPs 50 mg/kg). The duration of the test was two weeks. The blood samples were taken and the serums were separated. Serum levels of triglyceride, cholesterol, VLDL, LDL and HDL were determined using standard kits and methods.
Results: Based on the findings of this study, serum levels of triglyceride and VLDL in both ZnO-NPs receiving groups were significantly increased in comparison with the control group (p<0.05). Also,  the serum levels of HDL , LDL and LDL/HDL ratio decreased significantly in both ZnO-NPs receiving groups compared to the control group (p<0.05), while the  serum cholesterol levels did not change compared with the control group.
Conclusion: Our results showed that 25 and 50 mg/kg doses of ZnO-NPs had both harmful (increase triglyceride and VLDL and reduction of HDL) and beneficial (reduction of LDL and LDL/HDL ratio) effects on the blood lipid profile.
Keywords: ZnO-NPs, Lipid Profile, Rat
Full-Text [PDF 156 kb]   (1538 Downloads)    
Type of Study: article | Subject: General
Received: 2017/09/21 | Accepted: 2017/12/21 | Published: 2018/03/29
References
1. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015 Jul; 7(3):219-42. [DOI:10.1007/s40820-015-0040-x]
2. Pan Z, Lee W, Slutsky L, Clark RA, Pernodet N, Rafailovich MH. Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small. 2009 Apr;5(4):511-20. [DOI:10.1002/smll.200800798]
3. Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review. Materials (Basel). 2014 Apr;7(4):2833-2881. [DOI:10.3390/ma7042833]
4. Rajabairavi N, Raju CS, Karthikeyan C, Varutharaju K, Nethaji S, Hameed ASH, et al. Biosynthesis of Novel Zinc Oxide Nanoparticles (ZnO NPs) Using Endophytic Bacteria Sphingobacterium thalpophilum. Part of the Springer Proceedings in Physics book series (SPPHY, volume 189). Switzerland: Springer International Publishing Switzerland, 2017 May: 245-54.
5. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017 Dec;22(12):1825-34. [DOI:10.1016/j.drudis.2017.08.006]
6. Sheydaei P, Bayrami A, Azizian Y, Parvinroo Sh. Study on the Toxicity Effects of Zinc Oxide Nanoparticles on Hematological and Serum Parameters in Mice. Arak Med Univ J. 2016 Oct; 19(115): 39-47.[Full Text in Persian]
7. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, et al. Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nano Res. 2008 Jun;10(2):263-76. [DOI:10.1007/s11051-007-9245-3]
8. Zahra J, Iqbal S, Latif M, Ali M, Shad MA, Tabish TA, et al. A note on the Biocompatibility of Zinc oxide Nanoparticles in male albino mice. Nanosci Nanotechnol Lett. 2017 Mar;9(3):380-87. [DOI:10.1166/nnl.2017.2342]
9. Yan Z, Wang W, Wu Y, Wang W, Li B, Liang N, et al. Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int J Nanomedicine. 2017 Jun; 12:4433-42 [DOI:10.2147/IJN.S134897]
10. Wan K, Zhao J, Huang H, Zhang Q, Chen X, Zeng Z, et al. The association between
11. Kimura G, Kasahara M, Ueshima K, Tanaka S, Yasuno S, Fujimoto A, et al. Effects of atorvastatin on renal function in patients with dyslipidemia and chronic kidney disease: assessment of clinical usefulness in CKD patients with atorvastatin (ASUCA) trial. Clin Exp Nephrol. 2017 Jun; 21(3):417-424. [DOI:10.1007/s10157-016-1304-6]
12. Harris MA, Ferguson TS, Boyne MS, Figueroa JP. High prevalence of dyslipidemia among primary care patients with hypertension and diabetes in Jamaica. Arch Med Sci Atheroscler Dis. 2017 Oct; 2:e61-e67. [DOI:10.5114/amsad.2017.70596]
13. Saiedullah M, Sha MFR, Siddique MAH, Tamannaa Z, Hassan Z. Healthy Bangladeshi individuals having lower high-density lipoprotein cholesterol level compared to age-, gender-, and body mass index-matched Japanese individuals: A pilot study. J Mol Pathophysiol. 2017 Dec; 6(1): 1-4. [DOI:10.5455/jmp.20161221030930]
14. Javed M, Ahmad MI, Usmani N, Ahmad M. Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci Rep. 2017 May;7(1):1-11. [DOI:10.1038/s41598-017-01749-6]
15. Visconti L, Benvenga S, Lacquaniti A, Cernaro V, Bruzzese A, Conti G, et al. Lipid disorders in patients with renal failure: Role in cardiovascular events and progression of chronic kidney disease. J Clin Transl Endocrinol. 2016 Dec;6:8-14. [DOI:10.1016/j.jcte.2016.08.002]
16. Thakur SK, Jaggi K, Rathore B, Chander R, Mahdi F, Mathur A. Assessment of oxidative stress, antioxidant enzymes and lipid profile in the subjects of coronary artery disease (CAD). Int J Pharm Sci Res. 2014 July; 5(7): 3042-46.
17. Feillet-Coudray C, Meunier N, Bayle D, Brandolini-Bunlon M, Andriollo-Sanchez M, O'connor JM, et al. Effect of zinc supplementation on in vitro copper-induced oxidation of low-density lipoproteins in healthy French subjects aged 55–70 years: the Zenith Study. Br J Nutr. 2006 Jun;95(6):1134-42. [DOI:10.1079/BJN20061762]
18. Gatto L, Samman S. The effect of zinc supplementation on plasma lipids and low-density lipoprotein oxidation in males. Free Radic Biol Med. 1995 Oct;19(4):517-21. [DOI:10.1016/0891-5849(95)00041-U]
19. Age-Related Eye Disease Study Research Group. The effect of five-year zinc supplementation on serum zinc, serum cholesterol and hematocrit in persons randomly assigned to treatment group in the age-related eye disease study: AREDS Report No. 7. J Nutr. 2002 Apr;132(4):697-702. [DOI:10.1093/jn/132.4.697]
20. Parham M, Amini M, Aminorroaya A, Heidarian E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, cross-over trial. Rev Diabet Stud. 2008 Summer;5(2):102-9. [DOI:10.1900/RDS.2008.5.102]
21. Dimitrova A, Strashimirov D, Betova T, Russeva A, Alexandrova M. Zinc content in the diet affects the activity of Cu/Zn SOD, lipid peroxidation and lipid profile of spontaneously hypertensive rats. Acta Biol Hung. 2008 Sep;59(3):305-14. [DOI:10.1556/ABiol.59.2008.3.4]
22. Fosmire GJ. Zinc toxicity. Am J Clin Nutr. 1990 Feb;51(2):225-7. [DOI:10.1093/ajcn/51.2.225]
23. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014 Aug;5(8):927-46.
24. Kunutsor SK, Zaccardi F, Karppi J, Kurl S, Laukkanen JA. Is High Serum LDL/HDL Cholesterol Ratio an Emerging Risk Factor for Sudden Cardiac Death? Findings from the KIHD Study. J Atheroscler Thromb. 2017 Jun; 24(6):600-608. [DOI:10.5551/jat.37184]
25. D Adamo E, Guardamagna O, Chiarelli F, Bartuli A, Liccardo D, Ferrari F, et al. Atherogenic dyslipidemia and cardiovascular risk factors in obese children. Int J Endocrinol. 2015 Jan;2015:1-9.
26. Zhao Y, Li L, Zhang P-F, Liu X-Q, Zhang W-D, Ding Z-P, et al. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles. Poult Sci. 2016 Apr;95(4):920-33. [DOI:10.3382/ps/pev436]
27. Suzuki Y, Tada-Oikawa S, Ichihara G, Yabata M, Izuoka K, Suzuki M, et al. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol Appl Pharmacol. 2014 Jul 1;278(1):16-25. [DOI:10.1016/j.taap.2014.04.010]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pour Mohammad P, Alipanah-Moghadam R, Amani F, Nemati A, Malekzadeh V. Effect of Zinc Oxide Nanoparticles on Blood Lipid Profile in Wistar Male Rats . J Ardabil Univ Med Sci 2018; 18 (1) :34-42
URL: http://jarums.arums.ac.ir/article-1-1524-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 1 (spring 2018) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 41 queries by YEKTAWEB 4623