1. Miyauchi W, Shishido Y, Matsumi Y, Matsunaga T, Makinoya M, Shimizu S, et al. Simultaneous regulation of ferroptosis suppressor protein 1 and glutathione peroxidase 4 as a new therapeutic strategy of ferroptosis for esophageal squamous cell carcinoma. Esophagus. 2023;20(3):492-501. [ DOI:10.1007/s10388-022-00982-x] [ PMID] 2. Gholipour M, Islami F, Roshandel G, Khoshnia M, Badakhshan A, Moradi A, et al. Esophageal cancer in Golestan Province, Iran: a review of genetic susceptibility and environmental risk factors. Middle East J Dig Dis. 2016;8(4):249-266. [ DOI:10.15171/mejdd.2016.34] [ PMID] 3. Yang CS, Chen X, Tu S. Etiology and Prevention of Esophageal Cancer. Gastrointest Tumors. 2016 Sep;3(1):3-16. [ DOI:10.1159/000443155] [ PMID] [ ] 4. Guo J, Tong C, Shi J, Li X, Chen X. A prognosis model for predicting immunotherapy response of esophageal cancer based on oxidative stress-related signatures. Oncol Res. 2023;32(1):199-212. [ DOI:10.32604/or.2023.030969] [ PMID] [ ] 5. Kıran TR, Otlu O, Karabulut AB. Oxidative stress and antioxidants in health and disease. J Lab Med. 2023;47(1):1-11. [ DOI:10.1515/labmed-2022-0108] 6. Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287-93. [ DOI:10.1016/j.ajme.2017.09.001] 7. Klaunig JE. Oxidative stress and cancer. Curr Pharm Des. 2018;24(40):4771-4778. [ DOI:10.2174/1381612825666190215121712] 8. Gan X, Chen B, Shen Z, Liu Y, Li H, Xie X, et al. High GPX1 expression promotes esophageal squamous cell carcinoma invasion, migration, proliferation and cisplatin-resistance but can be reduced by vitamin D. Int J Clin Exp Med. 2014; 7(9):2530-40. 9. Miranda A, Janssen L, Bosman CB, van Duijn W, Oostendorp-van de Ruit MM, Kubben FJ, et al. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res. 2000;6(8):3183-92. 10. Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G. Antioxidant enzyme levels in cases with gastrointesinal cancer. Eur J Intern Med. 2009; 20(4):403-6. [ DOI:10.1016/j.ejim.2008.12.003] [ PMID] 11. Hu H, Luo M-l, Du X-l, Feng Y-b, Zhang Y, Shen X-m, et al. Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophageal squamous cell carcinomas. Chin Med J (Engl). 2007;120(23):2092-8. [ DOI:10.1097/00029330-200712010-00006] 12. Lei Z, Tian D, Zhang C, Zhao S, Su M. Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma. BMC Cancer. 2016; 16:410-18 [ DOI:10.1186/s12885-016-2462-3] [ ] 13. Singh Z, Karthigesu IP, Singh P, Kaur R. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: a review. Iranian J Publ Health. 2014; 43:7-16. 14. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017; 524:13-30. [ DOI:10.1016/j.ab.2016.10.021] [ PMID] 15. Zaręba K, Dorf J, Cummings K, Tabibi S, Maciejczyk M, Kędra B. Associations of oxidative stress, metabolic disorders in colorectal cancer patients. Prz Gastroenterol. 2024;19(2):206-213. [ DOI:10.5114/pg.2024.139995] [ PMID] [ ] 16. Wei J, Ye Z, Li Y, Li Y, Zhou Z. Citrus carotenoid extracts promote ROS accumulation and induce oxidative stress to exert anti-proliferative and pro-apoptotic effects in MDA-MB-231 cells. Antioxidants. 2024;13(3):264-284. [ DOI:10.3390/antiox13030264] [ PMID] [ ] 17. Popoola O, Samuel TA, Habeeb M, Magbagbeola O, Akinloye O. Interplay of Serum Apoptotic Proteins and Oxidative Stress Markers in Prostate Cancer and Benign Prostate Hyperplasia. Reseach suar. 2023; 1:1-22. [ DOI:10.21203/rs.3.rs-3734031/v1] 18. Lepara Z, Lepara O, Fajkić A, Rebić D, Alić J, Spahović HJRJIM. Serum malondialdehyde (MDA) level as a potential biomarker of cancer progression for patients with bladder cancer. Rom J Intern Med. 2020; 58(3):146-152. [ DOI:10.2478/rjim-2020-0008] [ PMID] 19. Rašić I, Rašić A, Akšamija G, Radović SJACC. The relationship between serum level of malondialdehyde and progression of colorectal cancer. Acta Clin Croat. 2018;57(3):411-416. [ DOI:10.20471/acc.2018.57.03.02] 20. Burlakova EB, Zhizhina GP, Gurevich SM, Fatkullina LD, Kozachenko AI, Nagler LG, et al. Biomarkers of oxidative stress and smoking in cancer patients. J Cancer Res Ther. 2010;6(1):47-53. [ DOI:10.4103/0973-1482.63569] [ PMID] 21. Lykkesfeldt JJCca. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin Chim Acta. 2007;380(1-2):50-8. [ DOI:10.1016/j.cca.2007.01.028] [ PMID] 22. Sadati Zarrini A, Moslemi D, Parsian H, Vessal M, Mosapour A, Shirkhani Kelagari Z. The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer. Caspian J Intern Med. 2016 Winter;7(1):31-6. 23. Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021 Jan-Mar;17(1):22-28. [ DOI:10.4103/jcrt.JCRT_862_16] [ PMID] 24. Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB, Maisonneuve PJJ. Smoking and colorectal cancer: a meta-analysis. JAMA. 2008;300(23):2765-78. [ DOI:10.1001/jama.2008.839] 25. Ighodaro O, Akinloye OJAjom. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med. 2018;54(4):287-93. [ DOI:10.1016/j.ajme.2017.09.001] 26. Said NS, Hadhoud KM, Nada WM, El Tarhouny SAJLSJ. Superoxide dismutase, glutathione peroxidase and vitamin E in patients with diabetic retinopathy. Life Sci J. 2013;10(1): 1851-7. 27. Tas F, Hansel H, Belce A, Ilvan S, Argon A, Camlica H, et al. Oxidative stress in breast cancer. Med Oncol. 2005;22(1):11-5. [ DOI:10.1385/MO:22:1:011] [ PMID] 28. Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G. Antioxidant enzyme levels in cases with gastrointesinal cancer. Eur J Intern Med. 2009 Jul;20(4):403-6. [ DOI:10.1016/j.ejim.2008.12.003] [ PMID] 29. Yuzhalin AE, Kutikhin AGJFRR. Inherited variations in the SOD and GPX gene families and cancer risk. Free Radic Res. 2012;46(5):581-99. [ DOI:10.3109/10715762.2012.658515] 30. Djokic M, Radic T, Santric V, Dragicevic D, Suvakov S, Mihailovic S, et al. The Association of Polymorphisms in genes encoding antioxidant enzymes GPX1 (rs1050450), SOD2 (rs4880) and transcriptional factor Nrf2 (rs6721961) with the risk and development of prostate cancer. Medicina (Kaunas). 2022;58(10):1414-25. [ DOI:10.3390/medicina58101414] [ PMID] [ ] 31. Arsova-Sarafinovska Z, Eken A, Matevska N, Erdem O, Sayal A, Savaser A, et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin Biochem. 2009;42(12):1228-35. [ DOI:10.1016/j.clinbiochem.2009.05.009] [ PMID] 32. Sabitha K, Shyamaladevi CJOO. Oxidant and antioxidant activity changes in patients with oral cancer and treated with radiotherapy. Oral Oncol. 1999;35(3):273-7. [ DOI:10.1016/S1368-8375(98)00115-8] 33. Ray G, Batra S, Shukla NK, Deo S, Raina V, Ashok S, et al. Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res Treat. 2000;59(2):163-70. [ DOI:10.1023/A:1006357330486] [ PMID] 34. Hawk MA, McCallister C, Schafer ZTJC. Antioxidant activity during tumor progression: a necessity for the survival of cancer cells? Cancers (Basel). 2016;8(10):92-8. [ DOI:10.3390/cancers8100092] [ ]
|