1. Khalid T, Soriano L, Lemoine M, Cryan S-A, O'Brien FJ, O'Leary C. Development of tissue-engineered tracheal scaffold with refined mechanical properties and vascularisation for tracheal regeneration. Front Bioeng Biotechnol. 2023;11:1187500. [ DOI:10.3389/fbioe.2023.1187500] [ PMID] [ ] 2. Xu Y, Duan L, Li Y, She Y, Zhu J, Zhou G, et al. Nanofibrillar decellularized wharton's jelly matrix for segmental tracheal repair. Adv Funct Mater. 2020; 30(14):1910067. [ DOI:10.1002/adfm.201910067] 3. Xia D, Jin D, Wang Q, Gao M, Zhang J, Zhang H, et al. Tissue‐engineered trachea from a 3D‐printed scaffold enhances whole‐segment tracheal repair in a goat model. J Tissue Eng Regener Med. 2019; 13(4):694-703. [ DOI:10.1002/term.2828] [ PMID] 4. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A. 2012; 18(21-22):2195-2209. [ DOI:10.1089/ten.tea.2011.0705] [ PMID] 5. Lei C, Mei S, Zhou C, Xia C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques. J Appl Biomater Funct Mater. 2021; 19:22808000211064948. [ DOI:10.1177/22808000211064948] [ PMID] 6. Busch SM, Lorenzana Z, Ryan AL. Implications for extracellular matrix interactions with human lung basal stem cells in lung development, disease, and airway modeling. Front Pharmacol. 2021; 12:645858. [ DOI:10.3389/fphar.2021.645858] [ PMID] [ ] 7. Multhaupt HA, Leitinger B, Gullberg D, Couchman JR. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016; 97:28-40. [ DOI:10.1016/j.addr.2015.10.013] [ PMID] 8. Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020; 21(6):1968-1994. [ DOI:10.1021/acs.biomac.0c00045] [ PMID] 9. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014; 15(12):786-801. [ DOI:10.1038/nrm3904] [ PMID] [ ] 10. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol. 2016; 49:10-24. [ DOI:10.1016/j.matbio.2015.06.003] [ PMID] [ ] 11. Dzamba BJ, DeSimone DW. Extracellular matrix (ECM) and the sculpting of embryonic tissues. Curr Top Dev Biol. 2018; 130:245-274. [ DOI:10.1016/bs.ctdb.2018.03.006] [ PMID] 12. Kim S-H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011; 209(2):139-151. [ DOI:10.1530/JOE-10-0377] [ PMID] 13. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002; 115(20):3861-3863. [ DOI:10.1242/jcs.00059] [ PMID] 14. Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, et al. A three-dimensional in vitro dynamic micro-tissue model of cardiac scar formation. Integr Biol. 2018; 10(3): 174-183. [ DOI:10.1039/C7IB00199A] [ PMID] 15. Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015; 42:11-55. [ DOI:10.1016/j.matbio.2015.02.003] [ PMID] [ ] 16. Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009; 23(4):397-418. [ DOI:10.1101/gad.1758709] [ PMID] 17. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012; 24(5):645-651. [ DOI:10.1016/j.ceb.2012.07.001] [ PMID] 18. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta-Gen Subj. 2014; 1840(8):2506-2519. [ DOI:10.1016/j.bbagen.2014.01.010] [ PMID] [ ] 19. Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends Cancer. 2018; 4(8):537-552. [ DOI:10.1016/j.trecan.2018.05.009] [ PMID] 20. Weber GF, Bjerke MA, DeSimone DW. Integrins and cadherins join forces to form adhesive networks. J Cell Sci. 2011; 124(8):1183-1193. [ DOI:10.1242/jcs.064618] [ PMID] [ ] 21. Popov C, Radic T, Haasters F, Prall W, Aszodi A, Gullberg D, et al . Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death Dis. 2011; 2(7):e186-e186. [ DOI:10.1038/cddis.2011.71] [ PMID] [ ] 22. Novoseletskaya ES, Evdokimov PV, Efimenko AY. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun. Signaling. 2023; 21(1):244. [ DOI:10.1186/s12964-023-01252-8] [ PMID] [ ] 23. Du J, Zu Y, Li J, Du S, Xu Y, Zhang L, et al . Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep. 2016; 6(1):20395. [ DOI:10.1038/srep20395] [ PMID] [ ] 24. Olivares-Navarrete R, Lee EM, Smith K, Hyzy SL, Doroudi M, Williams JK, et al . Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PloS one. 2017; 12(1):e0170312. [ DOI:10.1371/journal.pone.0170312] [ PMID] [ ] 25. Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J. Crystal structure of α5β1 integrin ectodomain: Atomic details of the fibronectin receptor. J Cell Biol. 2012; 197(1):131-140. [ DOI:10.1083/jcb.201111077] [ PMID] [ ] 26. Xiong J-P, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, et al . Crystal structure of the extracellular segment of integrin αVβ3. Science. 2001; 294(5541):339-345. [ DOI:10.1126/science.1064535] [ PMID] [ ] 27. Dickinson CD, Veerapandian B, Dai X-P, Hamlin RC, Xuong N-h, Ruoslahti E, et al . Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol. 1994; 236(4):1079-1092. [ DOI:10.1016/0022-2836(94)90013-2] [ PMID] 28. Horton MA. The αvβ3 integrin "vitronectin receptor". Int J Biochem Cell Biol. 1997; 29(5):721-725. [ DOI:10.1016/S1357-2725(96)00155-0] [ PMID] 29. Bachman H, Nicosia J, Dysart M, Barker TH. Utilizing fibronectin integrin-binding specificity to control cellular responses. Adv Wound Care. 2015; 4(8):501-511. [ DOI:10.1089/wound.2014.0621] [ PMID] [ ] 30. Yan Y, Wen Z, Wang X, Huang SY. Addressing recent docking challenges: A hybrid strategy to integrate template‐based and free protein‐protein docking. Proteins. 2017; 85(3):497-512. [ DOI:10.1002/prot.25234] [ PMID] 31. Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella SE, Xia B, et al . New additions to the ClusPro server motivated by CAPRI. Proteins. 2017; 85(3):435-444. [ DOI:10.1002/prot.25219] [ PMID] [ ] 32. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al . The ClusPro web server for protein-protein docking. Nat Protoc. 2017; 12(2):255-278. [ DOI:10.1038/nprot.2016.169] [ PMID] [ ] 33. Yan Y, Tao H, He J, Huang S-Y. The HDOCK server for integrated protein-protein docking. Nat Protocol. 2020; 15(5):1829-1852. [ DOI:10.1038/s41596-020-0312-x] [ PMID] 34. Yan Y, Zhang D, Zhou P, Li B, Huang S-Y. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017; 45(W1):W365-W373. [ DOI:10.1093/nar/gkx407] [ PMID] [ ] 35. Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and its limits in rigid body protein-protein docking. Structure. 2020; 28(9):1071-1081. e1073. [ DOI:10.1016/j.str.2020.06.006] [ PMID] [ ] 36. Huang S-Y, Zou X. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method. Nucleic Acids Res. 2014; 42(7):e55-e55. [ DOI:10.1093/nar/gku077] [ PMID] [ ] 37. Huang SY, Zou X. An iterative knowledge‐based scoring function for protein-protein recognition. Proteins. 2008; 72(2):557-579. [ DOI:10.1002/prot.21949] [ PMID] 38. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195-4200. [ DOI:10.1242/jcs.023820] [ PMID] [ ] 39. Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol. 2010; 26:397-419. [ DOI:10.1146/annurev-cellbio-100109-104020] [ PMID] [ ] 40. Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010; 339(1):237-246. [ DOI:10.1007/s00441-009-0821-y] [ PMID] 41. Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng. 2014; 5:2041731414557112. [ DOI:10.1177/2041731414557112] [ PMID] [ ] 42. Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev. 2009; 61(2):198-223. [ DOI:10.1124/pr.109.001289] [ PMID] [ ] 43. Benito-Jardón M, Klapproth S, Gimeno-LLuch I, Petzold T, Bharadwaj M, Müller DJ, et al. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. Elife. 2017; 6:e22264. [ DOI:10.7554/eLife.22264] [ PMID] [ ] 44. Wang H, Luo X, Leighton J. Extracellular matrix and integrins in embryonic stem cell differentiation. Biochem Insights. 2015; 8(Suppl 2):15-21. [ DOI:10.4137/BCI.S30377] [ PMID] [ ] 45. Baiguera S, Jungebluth P, Burns A, Mavilia C, Haag J, De Coppi P, et al. Tissue engineered human tracheas for in vivo implantation. Biomaterials. 2010; 31(34):8931-8938. [ DOI:10.1016/j.biomaterials.2010.08.005] [ PMID] 46. Shin YS, Choi JW, Park J-K, Kim YS, Yang SS, Min B-H, et al. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng. 2015; 43:1003-1013. [ DOI:10.1007/s10439-014-1126-1] [ PMID] 47. Giraldo-Gomez DM, García-López SJ, Tamay-de-Dios L, Sánchez-Sánchez R, Villalba-Caloca J, Sotres-Vega A, et al. Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. Mater Sci Eng C. 2019; 105:110142. [ DOI:10.1016/j.msec.2019.110142] [ PMID] 48. Danen EH, Sonneveld P, Brakebusch C, Fässler R, Sonnenberg A. The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol. 2002; 159(6):1071-1086. [ DOI:10.1083/jcb.200205014] [ PMID] [ ] 49. Mohri H, Katoh K, Iwamatsu A, Okubo T. The novel recognition site in the C-terminal heparin-binding domain of fibronectin by integrin α4β1 receptor on HL-60 cells. Exp Cell Res. 1996; 222(2):326-332. [ DOI:10.1006/excr.1996.0042] [ PMID] 50. Mould AP, Humphries MJ. Identification of a novel recognition sequence for the integrin alpha 4 beta 1 in the COOH‐terminal heparin‐binding domain of fibronectin. EMBO J. 1991; 10(13):4089-4095. [ DOI:10.1002/j.1460-2075.1991.tb04985.x] [ PMID] [ ]
|