1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. [ DOI:10.1016/S0140-6736(21)02724-0] [ PMID] 2. Hakanen A, Jalava J, Kaartinen L. National action plan on antimicrobial resistance 2017-2021, Ministry of Social Affairs and Health, Helsinki 2017;12: 16-17. 3. O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom. 2016: 10-12. 4. Bassetti M, Carnelutti A, Peghin M. Patient specific risk stratification for antimicrobial resistance and possible treatment strategies in gram-negative bacterial infections. Expert Rev Anti Infect Ther. 2017;15(1):55-65. [ DOI:10.1080/14787210.2017.1251840] [ PMID] 5. World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. WHO; [Cited 24 October 2017]. Available from. http://www.who.int/mediacentre/news/releases/2017/bacteria‑antibiotics‑needed/en/ 6. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;21;18(6):596. [ DOI:10.1186/PREACCEPT-6556009101270526] [ PMID] [ ] 7. Liu L, Liu B, Li Y, Zhang W. Successful control of resistance in Pseudomonas aeruginosa using antibiotic stewardship and infection control programs at a Chinese university hospital: a 6-year prospective study. Infect Drug Resist. 2018:637-46. [ DOI:10.2147/IDR.S163853] [ PMID] [ ] 8. Wang Y, Ma J, Li W, Liu M, Ding Y. Five-year surveillance of antimicrobial resistance changes and epidemiological characteristics in Pseudomonas aeruginosa: a retrospective study in a Chinese city hospital. Jundishapur J Microbiol. 2021;14(11). [ DOI:10.5812/jjm118107] 9. Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, et al. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. Msphere. 2021;6(3):10.1128/msphere. 00202-21. [ DOI:10.1128/mSphere.00202-21] [ PMID] [ ] 10. Saeli N, Jafari-Ramedani S, Ramazanzadeh R, Nazari M, Sahebkar A, Khademi F. Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect Dis. 2024;24(1):680. [ DOI:10.1186/s12879-024-09585-6] [ PMID] [ ] 11. Jafari-Ramedani S, Nazari M, Arzanlou M, Peeri-Dogaheh H, Sahebkar A, Khademi F. Prevalence and molecular characterization of colistin resistance in Pseudomonas aeruginosa isolates: insights from a study in Ardabil hospitals. BMC Microbiol. 2024;24(1):152. [ DOI:10.1186/s12866-024-03309-1] [ PMID] [ ] 12. Ibrahim D, Jabbour J-F, Kanj SS. Current choices of antibiotic treatment for Pseudomonas aeruginosa infections. Curr Opin Infect Dis. 2020;33(6):464-73. [ DOI:10.1097/QCO.0000000000000677] [ PMID] 13. Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. New drugs for the treatment of Pseudomonas aeruginosa infections with limited treatment options: a narrative review. Antibiotics (Basel). 2022;11(5):579. [ DOI:10.3390/antibiotics11050579] [ PMID] [ ] 14. Bazghandi SA, Safarirad S, Arzanlou M, Peeri-Dogaheh H, Ali-Mohammadi H, Khademi F. Prevalence of multidrug-resistant Pseudomonas aeruginosa strains in Ardabil. J Ardabil Univ Med Sci. 2020;20(2):280-6. [Full text in Persian] [ DOI:10.52547/jarums.20.2.280] 15. Nazari M, Ahmadi H, Hosseinzadeh S, Sahebkar A, Khademi F. Imipenem resistance associated with amino acid alterations of the OprD porin in Pseudomonas aeruginosa clinical isolates. Acta Microbiol Immunol Hung. 2023;70(3):206-12. [ DOI:10.1556/030.2023.02060] [ PMID] 16. Morehead MS, Scarbrough C. Emergence of global antibiotic resistance. Prim Care. 2018;45(3):467-84. [ DOI:10.1016/j.pop.2018.05.006] [ PMID] 17. Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117-31. [ DOI:10.1007/s40265-021-01635-6] [ PMID] [ ] 18. Sathe N, Beech P, Croft L, Suphioglu C, Kapat A, Athan E. Pseudomonas aeruginosa: Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infect Med (Beijing). 2023;2(3):178-94. [ DOI:10.1016/j.imj.2023.05.003] [ PMID] [ ] 19. Bader MS, Loeb M, Brooks AA. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2017;129(2):242-58. [ DOI:10.1080/00325481.2017.1246055] [ PMID] 20. Holmes CL, Anderson MT, Mobley HL, Bachman MA. Pathogenesis of gram-negative bacteremia. Clin Microbiol Rev. 2021;34(2):10.1128/cmr. 00234-20. [ DOI:10.1128/CMR.00234-20] [ PMID] [ ] 21. Shi Q, Huang C, Xiao T, Wu Z, Xiao Y. A retrospective analysis of Pseudomonas aeruginosa bloodstream infections: prevalence, risk factors, and outcome in carbapenem-susceptible and-non-susceptible infections. Antimicrob Resist Infect Control. 2019;8:1-9. [ DOI:10.1186/s13756-019-0520-8] [ PMID] [ ] 22. Gonzalez MR, Fleuchot B, Lauciello L, Jafari P, Applegate LA, Raffoul W, et al. Effect of human burn wound exudate on Pseudomonas aeruginosa virulence. mSphere. 2016;1(2):10.1128/msphere. 00111-15. [ DOI:10.1128/mSphere.00111-15] [ PMID] [ ] 23. Rodríguez-Lucas C, Fernández J, Martínez-Sela M, Álvarez-Vega M, Moran N, Garcia A, et al. Pseudomonas aeruginosa nosocomial meningitis in neurosurgical patients with intraventricular catheters: therapeutic approach and review of the literature. Enferm Infecc Microbiol Clin (Engl Ed). 2020;38(2):54-58. [ DOI:10.1016/j.eimc.2019.04.003] [ PMID] 24. Mohammadzadeh M, Fami HS, Motiee N, Sanjabi M. Identification of organic milk production potentials and requirements in rural and tribal areas from the viewpoints of Ardabil provincial animal husbandry experts. J Rural Res. 2020;10(4). [Full text in Persian] 25. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):10.1128/cmr. 00031-19. [ DOI:10.1128/CMR.00031-19] [ PMID] [ ] 26. Ebrahimzadeh Shiraz T, Rezaei Yazdi H, Alijanianzadeh M. Evaluation of Carbapenemase resistance in Pseudomonas aeruginosa and Enterobacteriaceae family isolated from clinical specimens by using phenotypic methods in 2014-2015. Pars J Med Sci. 2022;14(4):8-15. [Full text in Persian] [ DOI:10.29252/jmj.14.4.8] 27. Mohammadi M, Beig M, Barikrou K, Soltani S, Ali Nasab Maleki L, Veisi P, et al. A review of phenotypic methods for detecting antibiotic resistance induced by carbapenemase enzyme in bacteria isolated from clinical specimens. Med J Mashhad Univ Med Sci. 2022;65(1):148-71. [Full text in Persian] 28. Lai C-C, Chen S-Y, Ko W-C, Hsueh P-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57(4):106324. [ DOI:10.1016/j.ijantimicag.2021.106324] [ PMID] [ ] 29. Dancer SJ. Reducing the risk of COVID-19 transmission in hospitals: focus on additional infection control strategies. Surgery (Oxf). 2021;39(11):752-8. [ DOI:10.1016/j.mpsur.2021.10.003] [ PMID] [ ] 30. Hu Z, Yang L, Liu Z, Han J, Zhao Y, Jin Y, et al. Excessive disinfection aggravated the environmental prevalence of antimicrobial resistance during COVID-19 pandemic. Sci Total Environ. 2023;882:163598. [ DOI:10.1016/j.scitotenv.2023.163598] [ PMID] [ ] 31. Al-Hadidi SH, Alhussain H, Abdel Hadi H, Johar A, Yassine HM, Al Thani AA, et al. The spectrum of antibiotic prescribing during COVID-19 pandemic: a systematic literature review. Microb Drug Resist. 2021 ;27(12):1705-25. [ DOI:10.1089/mdr.2020.0619] [ PMID] [ ] 32. Charani E, Mendelson M, Pallett SJ, Ahmad R, Mpundu M, Mbamalu O, et al. An analysis of existing national action plans for antimicrobial resistance-gaps and opportunities in strategies optimising antibiotic use in human populations. Lancet Glob Health. 2023;11(3):e466-e74. [ DOI:10.1016/S2214-109X(23)00019-0] [ PMID]
|