[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 24, Issue 3 (Autumn 2024) ::
J Ardabil Univ Med Sci 2024, 24(3): 265-282 Back to browse issues page
Pretreatment with Chrysin Reduces Ifosfamide-Induced Acute Nephrotoxicity in Male Rats through Mitochondrial Protection
Ahmad Salimi * , Zhaleh Jamali , Mohammad Shabani , Deniz Bayrami , Amin Ashena Moghadam
Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran , a.salimi@arums.ac.ir
Abstract:   (290 Views)
Background: Ifosfamide-induced kidney damage is an important toxicity in children and adults undergoing chemotherapy. Studies have previously demonstrated that toxic metabolites of ifosfamide, such as acrolein, are associated with depletion of antioxidants, oxidative stress, and mitochondrial impairment, which may predispose the kidney to ifosfamide toxicity. Plant-derived active compounds, such as chrysin, found in fruits and vegetables, are renowned for their antioxidant and mitochondrial protective effects against toxicity-related mitochondrial damage and oxidative stress.
Methods: In this work, the protective effects of chrysin on ifosfamide-induced nephrotoxicity in male Wistar rats were investigated using biochemical, histopathological, and mitochondrial approaches. The animals were randomly divided into four groups: control, ifosfamide, ifosfamide + chrysin, and chrysin groups. Chrysin (25 mg/kg, i.p. daily) was administered to rats for 2 consecutive days, and ifosfamide (500 mg/kg, i.p.) was administered on the third day.
Results: The data demonstrated that pretreatment with chrysin significantly increased mitochondrial succinate dehydrogenase activity and protected against mitochondrial swelling, mitochondrial membrane potential loss, reactive oxygen species formation, lipid peroxidation, and glutathione depletion (p<0.001). Histopathological results showed that chrysin had protective effects and reduced histopathological abnormalities caused by ifosfamide.
Conclusion: These observations confirmed that chrysin pretreatment protects the kidneys against mitochondrial dysfunction, oxidative stress, and histopathological abnormalities induced by ifosfamide.
Keywords: Nephrotoxicity, Chrysin, Ifosfamide
Full-Text [PDF 2858 kb]   (120 Downloads)    
Type of Study: article | Subject: Pharmacology
Received: 2024/12/25 | Accepted: 2025/01/25 | Published: 2025/03/2
References
1. Ralhan R, Kaur J. Alkylating agents and cancer therapy. Expert Opin Ther Pat. 2007;17(9):1061-75. [DOI:10.1517/13543776.17.9.1061]
2. McCune JS, Friedman DL, Schuetze S, Blough D, Magbulos M, Hawkins DS. Influence of age upon ifosfamide-induced nephrotoxicity. Pediatr Blood Cancer. 2004;42(5):427-32. [DOI:10.1002/pbc.20011] [PMID]
3. Han H-Y, Choi M-S, Yoon S, Ko J-W, Kim S-K, Kim T-W. Investigation of ifosfamide toxicity induces common upstream regulator in liver and kidney. Int J Mol Sci. 2021;22(22):12201. [DOI:10.3390/ijms222212201] [PMID] []
4. Di Cataldo A, Astuto M, Rizzo G, Bertuna G, Russo G, Incorpora G, et al. Neurotoxicity during ifosfamide treatment in children. Med Sci Monit. 2009;15(1):25-30.
5. Kashoor I, Batlle D. Proximal renal tubular acidosis with and without Fanconi syndrome. Kidney Res Clin Pract. 2019;38(3):267-81. [DOI:10.23876/j.krcp.19.056] [PMID] []
6. Chugh R, Wagner T, Griffith KA, Taylor JM, Thomas DG, Worden FP, et al. Assessment of ifosfamide pharmacokinetics, toxicity, and relation to CYP3A4 activity as measured by the erythromycin breath test in patients with sarcoma. Cancer. 2007;109(11):2315-22. [DOI:10.1002/cncr.22669] [PMID]
7. Willits I, Price L, Parry A, Tilby M, Ford D, Cholerton S, et al. Pharmacokinetics and metabolism of ifosfamide in relation to DNA damage assessed by the COMET assay in children with cancer. Br J Cancer. 2005;92(9):1626-35. [DOI:10.1038/sj.bjc.6602554] [PMID] []
8. Wu X, Cui W, Guo W, Liu H, Luo J, Zhao L, et al. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice. Neurosci Bull. 2020;36(11):1158-70. [DOI:10.1007/s12264-020-00505-7] [PMID] []
9. Singh S, Kumar A. Protective effect of edaravone on cyclophosphamide induced oxidative stress and neurotoxicity in rats. Curr Drug Saf. 2019;14(3):209-16. [DOI:10.2174/1574886314666190506100717] [PMID] []
10. Duann P, Lin P-H. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529-551. [DOI:10.1007/978-3-319-55330-6_27] [PMID] []
11. Mafra D, Gidlund EK, Borges NA, Magliano DAC, Lindholm B, Stenvinkel P, et al. Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria. Eur J Clin Invest. 2018;48(11):e13020. [DOI:10.1111/eci.13020] [PMID]
12. Ashkar F, Bhullar KS, Wu J. The effect of polyphenols on kidney disease: Targeting mitochondria. Nutrients. 2022;14(15):3115. [DOI:10.3390/nu14153115] [PMID] []
13. Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 2018;145:187-96. [DOI:10.1016/j.phytochem.2017.09.016] [PMID]
14. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Shahbaz M, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019;235:116797. [DOI:10.1016/j.lfs.2019.116797] [PMID]
15. Garg A, Chaturvedi S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr Drug Targets. 2022;23(4):420-36. [DOI:10.2174/1389450122666210824141044] [PMID]
16. Soliman MM, Aldhahrani A, Gaber A, Alsanie WF, Mohamed WA, Metwally MM, et al. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, inflammatory cytokines, and apoptosis biomarkers. Toxicol Res. 2022;11(1):235-44. [DOI:10.1093/toxres/tfac003] [PMID] []
17. Lee E-J, Kang M-K, Kim DY, Kim Y-H, Oh H, Kang Y-H. Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients. 2018;10(7):882. [DOI:10.3390/nu10070882] [PMID] []
18. Ali BH, Adham SA, Al Za'abi M, Waly MI, Yasin J, Nemmar A, et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One. 2015;10(4):e0125285. [DOI:10.1371/journal.pone.0125285] [PMID] []
19. Nagavally RR, Sunilkumar S, Akhtar M, Trombetta LD, Ford SM. Chrysin ameliorates Cyclosporine-A-induced renal fibrosis by inhibiting TGF-β1-induced epithelial-mesenchymal transition. Int J Mol Sci. 2021;22(19):10252. [DOI:10.3390/ijms221910252] [PMID] []
20. Zhou Y, Tao H, Xu N, Zhou S, Peng Y, Zhu J, et al. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J Food Biochem. 2022;46(12):e14379. [DOI:10.1111/jfbc.14379]
21. Shabani M, Bayrami D, Moghadam AA, Jamali Z, Salimi A. Pretreatment of ellagic acid protects ifosfamide-induced acute nephrotoxicity in rat kidneys: A mitochondrial, histopathological and oxidative stress approaches. Toxicol Rep. 2023;10:441-7. [DOI:10.1016/j.toxrep.2023.04.005] [PMID] []
22. Salimi A, Shabani M, Mohammadi H, Sudi V. Intraperitoneal pretreatment of ellagic acid and chrysin alleviate ifosfamide-induced neurotoxicity, but betanin induces death in male wistar rats. Hum Exp Toxicol. 2023;42:09603271221147883. [DOI:10.1177/09603271221147883] [PMID]
23. Micakovic T, Banczyk WZ, Clark E, Kränzlin B, Peters J, Hoffmann SC. Isolation of pure mitochondria from rat kidneys and western blot of mitochondrial respiratory chain complexes. Bio-protocol. 2019;9(19):e3379. [DOI:10.21769/BioProtoc.3379] [PMID] []
24. Sadighara M, Amirsheardost Z, Minaiyan M, Hajhashemi V, Naserzadeh P, Salimi A, et al. Toxicity of atorvastatin on pancreas mitochondria: A justification for increased risk of diabetes mellitus. Basic Clin Pharmacol Toxicol. 2017;120(2):131-7. [DOI:10.1111/bcpt.12656] [PMID]
25. Shirmard LR, Shabani M, Moghadam AA, Zamani N, Ghanbari H, Salimi A. Protective effect of curcumin, chrysin and thymoquinone injection on trastuzumab-induced cardiotoxicity via mitochondrial protection. Cardiovasc Toxicol. 2022;22(7):663-75. [DOI:10.1007/s12012-022-09750-w] [PMID]
26. Eirin A, Lerman A, Lerman LO. The emerging role of mitochondrial targeting in kidney disease. Handb Exp Pharmacol. 2017;240:229-250. [DOI:10.1007/164_2016_6] [PMID] []
27. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629-46. [DOI:10.1038/nrneph.2017.107] [PMID] []
28. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-54. [DOI:10.1038/s41556-018-0124-1] [PMID] []
29. Fisel P, Renner O, Nies AT, Schwab M, Schaeffeler E. Solute carrier transporter and drug-related nephrotoxicity: The impact of proximal tubule cell models for preclinical research. Expert Opin Drug Metab Toxicol. 2014;10(3):395-408. [DOI:10.1517/17425255.2014.876990] [PMID]
30. Kwiatkowska E, Domański L, Dziedziejko V, Kajdy A, Stefańska K, Kwiatkowski S. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int J Mol Sci. 2021;22(11):6109. [DOI:10.3390/ijms22116109] [PMID] []
31. Gyurászová M, Kovalčíková AG, Renczés E, Kmeťová K, Celec P, Bábíčková J, et al. Oxidative stress in animal models of acute and chronic renal failure. Dis Markers. 2019;2019:8690805. [DOI:10.1155/2019/8690805] [PMID] []
32. Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The role of mitochondria in drug-induced kidney injury. Front Physiol. 2020;11:1079. [DOI:10.3389/fphys.2020.01079] [PMID] []
33. Ensergueix G, Pallet N, Joly D, Levi C, Chauvet S, Trivin C, et al. Ifosfamide nephrotoxicity in adult patients. Clin Kidney J. 2020;13(4):660-5. [DOI:10.1093/ckj/sfz183] [PMID] []
34. Ciarimboli G, Holle SK, Vollenbröcker B, Hagos Y, Reuter S, Burckhardt G, et al. New clues for nephrotoxicity induced by ifosfamide: Preferential renal uptake via the human organic cation transporter . Mol Pharm. 2011;8(1):270-9. [DOI:10.1021/mp100329u] [PMID]
35. Ommati MM, Farshad O, Ghanbarinejad V, Mohammadi HR, Khadijeh M, Azarpira N, et al. The nephroprotective role of carnosine against ifosfamide-induced renal injury and electrolytes imbalance is mediated via the regulation of mitochondrial function and alleviation of oxidative stress. Drug Res. 2020;70(1):49-56. [DOI:10.1055/a-1017-5085] [PMID]
36. Springate J, Chan K, Lu H, Davies S, Taub M. Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In Vitro Cell Dev Biol Anim. 1999;35(6):314-7. [DOI:10.1007/s11626-999-0080-y] [PMID]
37. Wang H-T, Lin J-H, Yang C-H, Haung C-H, Weng C-W, Lin AM-Y, et al. Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells. Oncotarget. 2017;8(41):70406-23. [DOI:10.18632/oncotarget.19710] [PMID] []
38. Knouzy B, Dubourg L, Baverel G, Michoudet C. Targets of chloroacetaldehyde-induced nephrotoxicity. Toxicol In Vitro. 2010;24(1):99-107. [DOI:10.1016/j.tiv.2009.08.026] [PMID]
39. Rodrigo R, Bosco C. Oxidative stress and protective effects of polyphenols: Comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142(3-4):317-27. [DOI:10.1016/j.cbpc.2005.11.002] [PMID]
40. Gorlach S, Fichna J, Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett. 2015;366(2):141-9. [DOI:10.1016/j.canlet.2015.07.004] [PMID]
41. Rehman H, Krishnasamy Y, Haque K, Thurman RG, Lemasters JJ, Schnellmann RG, et al. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin A treatment in rats. PLoS One. 2013;8(6):e65029. [DOI:10.1371/journal.pone.0065029] [PMID] []
42. Khezri S, Sabzalipour T, Jahedsani A, Azizian S, Atashbar S, Salimi A. Chrysin ameliorates aluminum phosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environ Toxicol. 2020;35(10):1114-24. [DOI:10.1002/tox.22947] [PMID]
43. Izuta H, Shimazawa M, Tazawa S, Araki Y, Mishima S, Hara H. Protective effects of Chinese propolis and its component, chrysin, against neuronal cell death via inhibition of mitochondrial apoptosis pathway in SH-SY5Y cells. J Agric Food Chem. 2008;56(19):8944-53. [DOI:10.1021/jf8014206] [PMID]
44. Kandemir FM, Kucukler S, Eldutar E, Caglayan C, Gülçin İ. Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: A multi-biomarker approach. Sci Pharm. 2017;85(1):4. [DOI:10.3390/scipharm85010004] [PMID] []
45. Şimşek H, Akaras N, Gür C, Küçükler S, Kandemir FM. Beneficial effects of chrysin on cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and caspase-3/Bax/Bcl-2 signaling pathways. Gene. 2023;875:147502. [DOI:10.1016/j.gene.2023.147502] [PMID]
46. Xu M, Shi H, Liu D. Chrysin protects against renal ischemia reperfusion induced tubular cell apoptosis and inflammation in mice. Exp Ther Med. 2019;17(3):2256-62. [DOI:10.3892/etm.2019.7189]
47. Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol. 2012;64(6):872-81. [DOI:10.1111/j.2042-7158.2012.01470.x] [PMID]
48. Ijaz MU, Jabeen F, Ashraf A, Imran M, Ehsan N, Samad A, et al. Evaluation of possible protective role of chrysin against arsenic-induced nephrotoxicity in rats. Toxin Rev. 2022;41(4):1237-45. [DOI:10.1080/15569543.2021.1993261]
49. Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose-Response. 2017;15(2):1559325817711782. [DOI:10.1177/1559325817711782] [PMID] []
50. Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 2017;92:998-1009. [DOI:10.1016/j.biopha.2017.06.003] [PMID]
51. Ileriturk M, Benzer F, Aksu EH, Yildirim S, Kandemir FM, Dogan T, et al. Chrysin protects against testicular toxicity caused by lead acetate in rats with its antioxidant, anti-inflammatory, and antiapoptotic properties. J Food Biochem. 2021;45(2):e13593. [DOI:10.1111/jfbc.13593] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.ARUMS.AEC.1400.027



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimi A, Jamali Z, Shabani M, Bayrami D, Ashena Moghadam A. Pretreatment with Chrysin Reduces Ifosfamide-Induced Acute Nephrotoxicity in Male Rats through Mitochondrial Protection. J Ardabil Univ Med Sci 2024; 24 (3) :265-282
URL: http://jarums.arums.ac.ir/article-1-2457-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 3 (Autumn 2024) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.14 seconds with 41 queries by YEKTAWEB 4623