:: Volume 18, Issue 1 (spring 2018) ::
J Ardabil Univ Med Sci 2018, 18(1): 52-61 Back to browse issues page
Detection of blaPER, blaGES and blaVEB Genes in Shigella sonnei Isolates from Patients with Diarrhea and Determination of Antibiotic Susceptibility Pattern
Maryam Tajoadini , Babak Kheyrkhah * , Kuomars Amini
Department of Microbiology, School of Basic Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran , babakkheirkhah@yahoo.com
Abstract:   (6101 Views)
Background & objectives: Shigella species are one of the most common causes of dysentery and sometimes death, especially in children and those with immunodeficiency. The variety of causative agents (Shigella species) and the development of drug-resistant strains make it difficult to select an appropriate antibiotic for the treatment of shigellosis. One of the most important factors involved in the resistance of Shigella isolates is the presence of extended spectrum beta lactamases (ESBLs) genes. The aim of this study was to determine the frequency of blaPER, blaGES and blaVEB genes in Shigella sonnei isolated from patients with dysentery using multiplex-PCR method and to determine the antibiotic susceptibility patterns of these isolates.
Methods: A total of 60 isolates of Shigella sonnei were collected from different hospitals and medical ‎diagnostic laboratories in Kerman province. Specimens from different age groups were cultivated in special media ‎and confirmed by biochemical tests. The presence of blaPER, blaGES and blaVEB genes were ‎investigated using specific primers and multiplex-PCR method. Antibiotic susceptibility test was ‎performed by disc diffusion method based on CLSI standards. ‎
Results: Multiplex-PCR results showed three samples had blaPER gene, but none of them had blaVEB or blaGES ‎genes. Also, the results of antibiotic susceptibility test showed the highest resistance for amoxicillin- clavulanic ‎acid (53.3%) antibiotic and the highest sensitivity for tetracycline (85%) antibiotic.‎
Conclusions: The results of the experiments indicated the presence of blaPER gene in Shigella sonnei isolates. In ‎addition, the results showed high resistance of isolates to amoxicillin clavulanic acid and ceftriaxone ‎antibiotics. Therefore, careful medical care and proper and timely use of appropriate antibiotics are essential to ‎prevent the spread of resistant isolates. ‎
Keywords: Shigella sonnei, Extended-Spectrum Betalactamase, Disk Diffusion, Multiplex-PCR
Full-Text [PDF 198 kb]   (1619 Downloads)    
Type of Study: article | Subject: General
Received: 2017/08/21 | Accepted: 2018/02/19 | Published: 2018/03/29
1. Saran B, Erdem B, Tekeli FA, Sahin F, Aysey AD. Characterization of Shigella Strains isolated in Ankara, Turkey by antimicrobial resistance models, plasmid profile analysis and pulsed-field gel electerophoresis. Mikrobiyol Bul. 2013 Jan;47(1):35-48. [Full text in Turkish] [DOI:10.5578/mb.4438]
2. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum β-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol. 2001 Oct;39(10):3747-9. [DOI:10.1128/JCM.39.10.3747-3749.2001]
3. Zhang R, Zhou HW, Cai JC, Zhang J, Chen GX, Nasu M, et al. Serotypes and extended-spectrum β-lactamase types of clinical isolates of Shigella spp. from the Zhejiang province of China. Diagn Microbiol Infect Dis. 2011 Jan; 69(1): 98-104. [DOI:10.1016/j.diagmicrobio.2010.08.027]
4. Li J, Li B, Ni Y, Sun J. Molecular characterization of the extended-spectrum beta-lactamase (ESBL)-producing Shigella spp. in Shanghai. Eur J Clin Microbiol Infect Dis. 2015 Mar; 34(3):447–51. [DOI:10.1007/s10096-014-2244-2]
5. Ambler RP, Coulson AF, Frere JM, Ghuysen, JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991 May; 276: 269–270. [DOI:10.1042/bj2760269]
6. Hidalgo L, Hopkins KL, Wareham DW, Gutierrez B, Gonzalez-Zorn B. Association of Extended-Spectrum β-Lactamase VEB-5 and 16S rRNA methyltransferase armA in Salmonella enterica from the United Kingdom. Antimicrob Agents Chemother. 2012 Sep; 56(9): 4985–4987. [DOI:10.1128/AAC.00381-12]
7. Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol. 2012 Jul; 12(5): 883–893. [DOI:10.1016/j.meegid.2012.02.008]
8. Ghandian S, Sattari M, Nikbin VS, Aslani MM. Study of antibiotic susceptibility pattern and presence of ipaH gene among shigella strains isolated from selected provinces in Iran. Modares J Med Sci. 2011Spring; 14(1): 81-8. [Full text in Persian]
9. Ranjbar R, Mirsaeed Ghazi F, Farshad S, Giammanco GM, Aleo A, Owlia P, et al. The occurrence of extended-spectrum β-lactamase producing Shigella spp in Tehran, Iran. Iran J Microbiol. 2013 Jun;5(2):108-12.
10. Shadi M, Moradli G. Molecular analysis of genes of ESBL (SHV.TEM.CTX) in Shigella Sonnei isolated from clinical samples by PCR. J Shahrekord Univ Med Sci. 2017 Jun-Jul; 19(2): 93-103. [Full text in Persian]
11. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010 Mar;65(3):490-5. [DOI:10.1093/jac/dkp498]
12. Bauer A, Kirby WM, Sherris JC, Truck M. Antibiotic susceptibility testing by a standardized single disk method. American J Clin Pathol. 1996 Apr; 45: 493-496. [DOI:10.1093/ajcp/45.4_ts.493]
13. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial susceptibility Testing; 21st Informational Supplement. 2014; M100-S24. Wayne, PA: CLSI.
14. Abbaspour S, Mardaneh J, Ahmadi K. The survey of shigellosis frequency and determination of antibiotic resistance profile of isolated strains from infected children in Tehran. Iran South Med J. 2014 Apr; 17(1): 42-48.
15. Lamba K, Nelson JA, Kimura AC, Poe A, Collins J, Kao AS, et al. Shiga Toxin 1–Producing Shigella sonnei Infections, California, United States, 2014–2015. Emerg Infect Dis. 2016 Apr;22(4):679-86. [DOI:10.3201/eid2204.151825]
16. Acikgoz ZC, Eser OK, Kocagoz S. CTX-M-3 type beta-lactamase producing Shigella sonnei isolates from pediatric bacillary dysentery. Jpn J Infect Dis. 2008 Mar; 61: 135-37.
17. Mohammadi-Mehr M, Feizabadi MM. Antimicrobial resistance pattern of Gram-negative bacilli isolated from patients at ICUs of Army hospitals in Iran. Iran J Microbiol. 2011 Mar; 3: 26-30.
18. Girlich D, Poirel L, Leelaporn A, Karim A, Tribuddharat C, Fennewald M, et al. Molecular epidemiology of the integron-located VEB-1 extended-spectrum β-Lactamase in nosocomial enterobacterial isolates in Bangkok. Thailand J Clin Microbiol. 2001 Jan; 39(1): 175–182. [DOI:10.1128/JCM.39.1.175-182.2001]
19. Power P, Di Conza J, Rodrıiguez MM, Ghiglione B, Ayala JA, Casellas JM, et al. Biochemical characterization of PER-2 and genetic environment of blaPER-2. Antimicrob Agents Chemother. 2007 Jul; 51(7): 2359–2365 [DOI:10.1128/AAC.01395-06]
20. Villegas MV, Kattan JN, Quinteros MG, Casellas JM. Prevalence of extended-spectrum β-lactamases in South America. Clin Microbiol Infect. 2008 Jan;14 (1): 154–8. [DOI:10.1111/j.1469-0691.2007.01869.x]
21. Kiratisin P, Henprasert A. Genotypic analysis of plasmid-mediated β-lactamases amongst Enterobacteriaceae other than Escherichia spp. and Klebsiella spp. that are non-susceptible to a broad-spectrum cephalosporin. Int J Antimicrob Agents. 2010 Oct; 36: 343–347. [DOI:10.1016/j.ijantimicag.2010.06.029]
22. Quinteros M, Radice M, Gardella N, Rodriguez MM, Costa N, Korbenfeld D. Extended-spectrum β-Lactamases in Enterobacteriaceae in Buenos Aires, Argentina, public hospitals. Antimicrob Agents Chemother. 2003 Sep; 47(9): 2864–2867. [DOI:10.1128/AAC.47.9.2864-2867.2003]
23. Ziyaei M, Azarkar G, Saadatjou SA, Namaei MH. Study of Shigella genera and their drug resistance in dysenteric patients referring to Nehbandan health -care centers and health houses. J Birjand Univ Med Sci. 2007 Jun; 14(2): 30-36. [Full text in Persian]
24. Moghbeli M, Behnood V, Ranjbar R. A study to determine antibiotic resistance and recognition qnr genes in Shigella strains isolated from patients admitted to Mofid's children medical center, Tehran. J Microbial World. 2014 Apr; 7(1): 49-57. [Full text in Persian]
25. Soltan Dallal MM, Rastegar Lari A, Hosseini M, Aminharati F. The trend of drug resistance in toxin and non-toxin producing Shigella Spp. isolated from stool of children with diarrhea. J Kurd Univ Med Sci 2013; 18(70) 51–58. [Full text in Persian]
26. Eghtedardoost M, Saadati M, Nazarian SH, Mokhtar Zare, Malaii F, Heiat M. Identification of ipaB in Shigella and cloning of this gene pET22b(+) vector and antibiotic Susceptibility of Shigella strains. Iranian J Infect Dis. 2010; 15(49): 55-61. [Full text in Persian]
27. Afshari N, Bakhshi B, Mahmoudi aznaveh A, Fallah F, Rahbar M, Rafiei Tabatabaei S. Investigation of prevalence of Shigella sonnei isolates among children with diarrhea admitted in to two hospital in Tehran in 1391 with Antimicrobial susceptibility of isolates. Iran J Med Microbiol. 2016 Jul; 10 (2): 16-22.

XML   Persian Abstract   Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 1 (spring 2018) Back to browse issues page