[Home ] [Archive]   [ فارسی ]  
:: Main In Press Current Issue All Issues Search register ::
Main Menu
Home::
Journal Information::
Editorial Board::
Articles archive::
For Authors::
For Reviewers::
Editorial Policy::
Registration::
Contact us::
::
..
Indexing

 

 

 

 

 
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Creative commons

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

..
:: Volume 18, Issue 1 (spring 2018) ::
J Ardabil Univ Med Sci 2018, 18(1): 108-119 Back to browse issues page
Effect of Interferon- on Expression of CD39 and CD73 Genes in the Human Wharton’s Jelly Mesenchymal Stem Cells
Maryam Rahimzadeh , Leila Pirdel *
Department of Medicine, Ardabil Branch, Islamic Azad University, Ardabil, Iran , lpirdel@iauardabil.ac.ir
Abstract:   (8456 Views)
Background & objectives: Mesenchymal stem cells have been known as hypo-immunogenic and immunosuppressive cells. Exposure of mesenchymal stem cells to interferon γ (IFN-γ) may influence their immunomodulatory properties. In the present study, the expression level of adenosine producing CD39 and CD73 ectonucleotides as an immunosuppressant were evaluated in Wharton’s Jelly- derived Mesenchymal Stem Cells (WJ-MSCs) in the presence and absence of IFN-g.
Methods: In this experimental study, MSCs were isolated, cultured, and propagated from Wharton's jelly obtained from human umbilical cord. The phenotypic characterization of these cells was performed via analysis of their surface markers using flow cytometry. Then, the cultured mesenchymal stem cells were treated with IFN-g. After 24 hours, the expression levels of CD39 and CD73 genes were analyzed using qPCR in control and IFN-g-treated cells.
Results: Flow cytometric analysis of stem cells revealed morphological similarity to fibroblastic cells and expression of CD105 and CD73 markers in these cells. The results of qPCR showed that the expression level of CD39 was significantly increased in IFN-g-treated cells compared to non-treated cells, while there was no significant difference in CD73 expression level between control and IFN-g - treated cells.
Conclusion: The results indicated the possible role of IFN-g in development of the immunoregulatory capacity of mesenchymal stem cells through expression of target genes. However this should be studied precisely.
Keywords: Mesenchymal Stem Cells, Interferon Gamma, Adenosine, CD39, CD73
Full-Text [PDF 252 kb]   (1688 Downloads)    
Type of Study: article | Subject: General
Received: 2018/01/5 | Accepted: 2024/05/11 | Published: 2018/03/29
References
1. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998 Jul;176(1):57-66. https://doi.org/10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7 [DOI:10.1002/(SICI)1097-4652(199807)176:13.0.CO;2-7]
2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr;284(5411):143-7. [DOI:10.1126/science.284.5411.143]
3. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004 Jul-Sep;8(3):301-16. [DOI:10.1111/j.1582-4934.2004.tb00320.x]
4. Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med. 2007 Nov;262(5):509-25. [DOI:10.1111/j.1365-2796.2007.01844.x]
5. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F. The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell Immunol. 2008 Feb;251(2):131-6. [DOI:10.1016/j.cellimm.2008.04.009]
6. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008 Feb;2(2):141-50. [DOI:10.1016/j.stem.2007.11.014]
7. Kong QF, Sun B, Bai SS, Zhai DX, Wang GY, Liu YM, et al. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol. 2009 Feb;207(1-2):83-91. [DOI:10.1016/j.jneuroim.2008.12.005]
8. DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, et al. Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A. 2009 Oct;15(10):2795-806. [DOI:10.1089/ten.tea.2008.0630]
9. Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005 Apr;90(4):516-25.
10. Dugast AS, Vanhove B. Immune regulation by non-lymphoid cells in transplantation. Clin Exper Immunol. 2009 Apr;156(1):25-34. [DOI:10.1111/j.1365-2249.2009.03877.x]
11. Crop M, Baan C, Weimar W, Hoogduijn M. Potential of mesenchymal stem cells as immune therapy in solid-organ transplantation. Transpl Int. 2009 Apr;22(4):365-76. [DOI:10.1111/j.1432-2277.2008.00786.x]
12. Ko JH, Lee HJ, Jeong HJ, Oh JY. Ly6C(hi) monocytes are required for mesenchymal stem/stromal cell-induced immune tolerance in mice with experimental autoimmune uveitis. Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):6-12. [DOI:10.1016/j.bbrc.2017.10.097]
13. Chan CK, Lin TC, Huang YA, Chen YS, Wu CL, Lo HY, et al. The modulation of Th2 immune pathway in the immunosuppressive effect of human umbilical cord mesenchymal stem cells in a murine asthmatic model. Inflamm Res. 2016 Oct;65(10):795-801. [DOI:10.1007/s00011-016-0961-y]
14. Kapranov NM, Davydova YO, Galtseva IV, Petinati NA, Drize NI, Kuzmina LA, et al. Effect of Priming of Multipotent Mesenchymal Stromal Cells with Interferon gamma on Their Immunomodulating Properties. Biochemistry (Mosc). 2017 Oct;82(10):1158-68. [DOI:10.1134/S000629791710008X]
15. Shin TH, Kim HS, Kang TW, Lee BC, Lee HY, Kim YJ, et al. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis. 2016 Dec;7(12):e2524. [DOI:10.1038/cddis.2016.442]
16. Chen YM, Yang WK, Whang-Peng J, Tsai CM, Perng RP. An analysis of cytokine status in the serum and effusions of patients with tuberculous and lung cancer. Lung cancer. 2001 Jan;31(1):25-30. [DOI:10.1016/S0169-5002(00)00165-3]
17. Ikeda H, Old LJ, Schreiber RD. The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 2002 Apr;13(2):95-109. [DOI:10.1016/S1359-6101(01)00038-7]
18. Holan V, Hermankova B, Bohacova P, Kossl J, Chudickova M, Hajkova M, et al. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment. Stem Cell Rev. 2016 Dec;12(6):654-63. [DOI:10.1007/s12015-016-9688-y]
19. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol. 2004 Apr; 22:657-82. [DOI:10.1146/annurev.immunol.22.012703.104731]
20. Kerkela E, Laitinen A, Rabina J, Valkonen S, Takatalo M, Larjo A, et al. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells. Stem Cells. 2016 Mar;34(3):781-90. [DOI:10.1002/stem.2280]
21. Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013 Jun;19(6):355-67. [DOI:10.1016/j.molmed.2013.03.005]
22. Roberts V, Stagg J, Dwyer KM. The Role of Ectonucleotidases CD39 and CD73 and Adenosine Signaling in Solid Organ Transplantation. Front immunol. 2014 Feb;5:64. [DOI:10.3389/fimmu.2014.00064]
23. Kinsey GR, Huang L, Jaworska K, Khutsishvili K, Becker DA, Ye H, et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J Am Soc Nephrol. 2012 Sep;23(9):1528-37. [DOI:10.1681/ASN.2012010070]
24. Burr SP, Dazzi F, Garden OA. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol Cell biol. 2013 Jan;91(1):12-8. [DOI:10.1038/icb.2012.60]
25. Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immune responses. Trend Immunol. 2012 May;33(5):231-7. [DOI:10.1016/j.it.2012.02.009]
26. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene. 2013 Apr;32(14):1743-51. [DOI:10.1038/onc.2012.269]
27. Lim JY, Park MJ, Im KI, Kim N, Jeon EJ, Kim EJ, et al. Combination cell therapy using mesenchymal stem cells and regulatory T-cells provides a synergistic immunomodulatory effect associated with reciprocal regulation of TH1/TH2 and th17/treg cells in a murine acute graft-versus-host disease model. Cell Transplant. 2014 Apr;23(6):703-14. [DOI:10.3727/096368913X664577]
28. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007 Aug;110(4):1225-32. [DOI:10.1182/blood-2006-12-064527]
29. Conter LJ, Song E, Shlomchik MJ, Tomayko MM. CD73 expression is dynamically regulated in the germinal center and bone marrow plasma cells are diminished in its absence. PloS one. 2014 Mar; 9(3):e92009. [DOI:10.1371/journal.pone.0092009]
30. Tan K, Zheng K, Li D, Lu H, Wang S, Sun X. Impact of adipose tissue or umbilical cord derived mesenchymal stem cells on the immunogenicity of human cord blood derived endothelial progenitor cells. PloS one. 2017;12(5):e0178624. [DOI:10.1371/journal.pone.0178624]
31. Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, et al. Immunogenicity of umbilical cord tissue derived cells. Blood. 2008 Jan;111(1):430-8. [DOI:10.1182/blood-2007-03-078774]
32. Saldanha-Araujo F, Ferreira FI, Palma PV, Araujo AG, Queiroz RH, Covas DT, et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 2011 Jul;7(1):66-74. [DOI:10.1016/j.scr.2011.04.001]
33. Sattler C, Steinsdoerfer M, Offers M, Fischer E, Schierl R, Heseler K, et al. Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transplant. 2011 Sep; 20(8):1221-30. [DOI:10.3727/096368910X546553]
34. Schmelzle M, Duhme C, Junger W, Salhanick SD, Chen Y, Wu Y, et al. CD39 modulates hematopoietic stem cell recruitment and promotes liver regeneration in mice and humans after partial hepatectomy. Ann Surg. 2013 Apr;257(4):693-701. [DOI:10.1097/SLA.0b013e31826c3ec2]
35. de Lourdes Mora-Garcia M, Garcia-Rocha R, Morales-Ramirez O, Montesinos JJ, Weiss-Steider B, Hernandez-Montes J, et al. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. J Transl Med. 2016 Oct;14(1):302. [DOI:10.1186/s12967-016-1057-8]
36. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006 Feb;24(2):386-98. [DOI:10.1634/stemcells.2005-0008]
37. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003 Feb;75(3):389-97. [DOI:10.1097/01.TP.0000045055.63901.A9]
38. Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS one. 2010 Feb;5(2):e9016. [DOI:10.1371/journal.pone.0009016]
39. Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response. J Immunol. 2015 Oct; 195(8):3828-37. [DOI:10.4049/jimmunol.1501139]
40. Friedman DJ, Künzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, et al. From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A. 2009 Sep; 106(39):16788-93. [DOI:10.1073/pnas.0902869106]
41. Hu P, Hunt NH, Arfuso F, Shaw LC, Uddin MN, Zhu M, et al. Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci. 2017 Oct; 58(12):5043-5055. [DOI:10.1167/iovs.17-21654]
42. Chatterjee D, Tufa DM, Baehre H, Hass R, Schmidt RE, Jacobs R. Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood. 2014 Jan;123(4):594-5. [DOI:10.1182/blood-2013-09-524827]
43. Lee JJ, Jeong HJ, Kim MK, Wee WR, Lee WW, Kim SU, et al. CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function. Purinergic signal. 2014 Jun;10(2):357-65. [DOI:10.1007/s11302-013-9385-0]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimzadeh M, Pirdel L. Effect of Interferon- on Expression of CD39 and CD73 Genes in the Human Wharton’s Jelly Mesenchymal Stem Cells . J Ardabil Univ Med Sci 2018; 18 (1) :108-119
URL: http://jarums.arums.ac.ir/article-1-1529-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 18, Issue 1 (spring 2018) Back to browse issues page
مجله دانشگاه علوم پزشکی اردبیل Journal of Ardabil University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 40 queries by YEKTAWEB 4623