نگاه آزمایی زیاتری بر سرعت هفائتمه (NCV) در بیماران
هموپالیپنزی مزمن

محمدرضا مهدی، فریبرز بیاتی، حسن ارگانی

چکیده
زمینه و هدف: عوارض عصبی یکی از اختلالات شایع در بیماران با نارسایی کلیوی است. هدف این مطالعه بررسی اثر تجویز روی بر سرعت هفائتمه عصبی در بیماران هموپالیپنزی مزمن بود. روش کار: از یک مطالعه کلارماری باینی ملی مقاطع 85 بیمار هموپالیپنزی مزمن در دو گروه مطالعه شرکت کردند. گروه اول شامل 85 بیمار و گروه دوم شامل 85 بیمار و به صورت مکث در 100 میلی کرم دارونوش به دسته دو داروهای مختلف و دارونونا در مدت مطالعه گردید. سپس مکث و دارونونا در دو گروه به مدت میلی کرم عصبی (NCV) (Nerve Conduction Velocity) پیامدها: پیامد اعضا این داروهای از یکدیگر تفاوت معنی‌داری نداشت و با عملکرد برخی از متغیرها کاهش یافتند. اما در دو داروهای مختلف این داروهای از یکدیگر تفاوت معنی‌داری نداشتند. نتیجه گذاری: در بیماران تحت دیالیز مداوم تجویز روی سبب بهبود عملکرد اعضا می‌شود.

کلمات کلیدی: روی هموپالیپنزی سرعت هفائتمه عصبی

دریافت: 89/2/13
پذیرش: 89/2/13

مقدمه
عوارض نورولوژیک یکی از عوارض شایع بیماران با نارسایی کلیوی است. این اعماک از عصب ایجاد می‌کند. آنتی‌بیوتیک‌ها، داروهای مایع، داروهای غیرمایع و داروهای غیرلیکوپیدیک قاهر شده‌اند. مینی‌ریکیری ایجاد می‌کند. در تحقیقات جدید، تجویز روی ایجاد می‌کند. می‌تواند در بیماران تحت دیالیز مداوم تجویز روی سبب بهبود عملکرد اعضا می‌شود.

*این مقاله حاصل طرح تحقیقاتی مصوب مرکز تحقیقات کاربردی دارویی تبریز به شماره 1389/45/5/8/98/124 می‌باشد.
کل‌کورکورتکتون‌ها. با‌داردی، شیرده و استفاده از
فرصت‌های مدل‌سازی در خانم‌ها با میان‌سنجی خروج از
طرح بودند. پس از صحبت‌ها و دریافت رضایت‌نامه از
بیماران، بیست و سه آن‌ها به طور تصادفی در دو
گروه یک (دارو‌نامه - مکمل) و گروه دو (مکمل -
دارو‌نامه) قرار گرفتند. این اعداد بیمار نتیجه
65 گروه در دو گروه 35 نفری (گروه یک) و 30 نفری
(گروه دو) تا پایان مطالعه بررسی شدند. تمامی
بیماران هفته ای 4 در بستر 4 ساعت با استفاده از
غشا سلوئیز هموپالیزی می‌شدند. فاکتور دیالیز در
همه بیماران در حد مطلوب بوده (V<1/4Kl / Kt >0.7
شراز دیالیز و دارو‌ها در ضمن مطالعه تغییر نیافته.
گروه 1 140*140*140 Vo دیالیز دارو‌نا (نشانه‌های زدن)
و گروه 2 Vo دارو‌نا (شیوع 200*140*140 mg
کیسول سولفیت روز هندها 140 میلی‌گرمی
شرکت اپتیک (آریا) به مدت 2 ماه دریافت کرده. تنها
سبس مکمل و دارو‌نا به مدت 2 ماه قطع گردید.
به دنبال آن مطالعه دو ماه دیگر صورت منفی ادامه یافت (گروه 1 مکمل و گروه 2 دارو‌نا
دریافت کردن). عملکرد عصبی در روزهای 130-140
180 با تغییر سرعت هدایت عصبی
الکترودیاگناز ارزیابی شد. عوارض مصرف مکمل
اختلالات معدم- روده‌ای است که در جریان پاش
آن نتیجه در یک بیمار موقت از ابتدا طرح مشاهده
شد و یو از مطالعه خارج گردید.
آزمایشات الکترودیاگناز 2 شامل طیف وسیعی از
تست‌های اصولی است که می‌توانند آن‌ها
(NGS) الکترومونیارام و مطالعه هدایت عصبی
3 می‌باشد. عملکرد عصبی خصوصاً هدایت الکترودیاگناز آن را از اغتشاش حسی و حرکتی مطالعه
می‌کند. در جریان این آزمایش اندام‌گیری سرعت
هدایت عصبی (NCV) باید توجه داشته که اندام‌گیری آن تنها یکی از

1 Crossover randomized controlled trial
2 Electrodiagnostic test
3 Nerve conduction study
بحث

عملکرد اعصاب مطالعه شده در پژوهش ما در دوره دارونما در هر دو گروه تغییر معنی‌دار نداشت و یا عملکرد آنها کاهش یافته‌اند. کاهش عملکرد اعصاب با NCV افزایش latency کاهش داده‌اند و یا کاهش مختلف گزارش شده است [15, 14, 11]. اسکوپنها مکانیسم سبب افزایش مصرف سهی در بدن غیرفعال شوند و هم‌دانه کافی باعث جلوگیری از کاهش NCV و افزایش NCVE مشود [15-16]. حذف نورون‌کسبین‌های قابل دیالیز ممکن است در نورون‌های مهم باشد. با این حال، مقادیر ازمرا با درجه‌ی اختلال عصبی هیستگی ضعیف را نشان می‌دهد [16]. تجمع متابولیت‌ها، اختلال هورمونی، تجمع متابولیسم و استحکام بی و عدم تعادل نوروتروپین‌های تحریکی و میاری از عوامل مزمن در پاتوفیزیولوژی انسفادولیاتی اورمونی‌هاست. نارسایی کلیوی باعث ایجاد میزان آثار عصبی می‌شود که هم‌اکنون آنها به عنوان نورون‌کسبین‌های اورمونی عمل می‌کنند.

یافته‌ها

توزیع سنی و جنسی افراد مورد مطالعه در جدول ۱ آمده است. بررسی مقادیر مختلف افزایش‌های مورد مطالعه در دوره مصرف دارونما در گروه یک (دو ماه اول پژوهش) در ۱۲ میلی‌گرم عدم تفاوت معنی‌دار این نشان داد اما در ۱۳ میلی‌گرم بیان‌گر کاهش عملکرد اعصاب مشاهده گردید (جدول ۳). بینوی عملکرد در ۲۰ میلی‌گرم در دوره مصرف کمک روی در گروه یک (دو ماه آخر مطالعه) حاصل شد (جدول ۳). نتایج ۲۴ میلی‌گرم مورد مطالعه در دوره مصرف مکمل گروه ۲ در دو ماهه اول مطالعه بینوی عملکرد ۱۴ میلی‌گرم را نشان داد (جدول ۴). کاهش عملکرد ۲۰ میلی‌گرم بررسی در مدت عدم تجویز روی (دو

جدول ۱: توزیع سنی و جنسی افراد مورد مطالعه

<table>
<thead>
<tr>
<th>سن (سال)</th>
<th>میانگین سن (سال)</th>
<th>جمع‌آوری</th>
<th>ملکهای</th>
<th>گروه‌های</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>درصد</td>
<td>تعداد</td>
<td>درصد</td>
</tr>
<tr>
<td>۳۷-۷۸</td>
<td>۵۰/۹۷ + ۱۱/۵۰</td>
<td>۲۳/۹</td>
<td>۳۷/۱</td>
<td>۵۰/۹۷ + ۱۱/۵۰</td>
</tr>
<tr>
<td>۳۷-۷۸</td>
<td>۵۰/۸۷ + ۱۳/۷۴</td>
<td>۴۳/۳</td>
<td>۳۶/۷</td>
<td>۵۰/۸۷ + ۱۳/۷۴</td>
</tr>
<tr>
<td>۳۷-۷۸</td>
<td>۵۰/۷۷ + ۱۴/۷۴</td>
<td>۴۶/۱</td>
<td>۳۶/۹</td>
<td>۵۰/۷۷ + ۱۴/۷۴</td>
</tr>
</tbody>
</table>

۱ Evoked Potential
| جدول 3: تفاوت و اخلاق نتایج اعصاب در دوره دارویی دارا گروه 1 |

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>شروع (روز)</th>
<th>پایان (روز)</th>
<th>اختلاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tibialis.Dis.R.M.La (ms)</td>
<td>5/38±1/34</td>
<td>5/33±1/34</td>
<td>0/05±1/30</td>
</tr>
<tr>
<td>Tibialis.Dis.R.M.Am (mv)</td>
<td>8/25±0/38</td>
<td>8/25±0/38</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Proximal.M. NCV(m/s)</td>
<td>4/1/3±0/40</td>
<td>4/1/3±0/40</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Eye.R.La (ms)</td>
<td>11/6/9±1/87</td>
<td>11/6/9±1/87</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Eye.R.Am (ms)</td>
<td>10/8/6</td>
<td>10/8/6</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Suralis. Dis.S.R. La (ms)</td>
<td>6/36±0/22</td>
<td>6/36±0/22</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Suralis. Dis.S.R. Am (ms)</td>
<td>9/59±0/46</td>
<td>9/59±0/46</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Suralis. Dis.S.R. NCV(m/s)</td>
<td>12/20±1/15</td>
<td>12/20±1/15</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.La (ms)</td>
<td>7/21±0/50</td>
<td>7/21±0/50</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.Am (ms)</td>
<td>5/41±0/60</td>
<td>5/41±0/60</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.NCV(m/s)</td>
<td>7/12±0/70</td>
<td>7/12±0/70</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Ulnaris.R.S.La (ms)</td>
<td>6/37±0/23</td>
<td>6/37±0/23</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Ulnaris.R.S.Am (ms)</td>
<td>6/37±0/23</td>
<td>6/37±0/23</td>
<td>0/00±0/00</td>
</tr>
<tr>
<td>Ulnaris.R.S.NCV(m/s)</td>
<td>7/12±0/70</td>
<td>7/12±0/70</td>
<td>0/00±0/00</td>
</tr>
</tbody>
</table>

\(\text{Ns;} \) هیپوئیک، اسیدهای آمینه‌ای مختلف، اسیدهای فنولی و

اصول، پل آمینی، فنول و کوکزه‌های

ایندول، استون، پل آمینی، فنول و کوکزه‌های

جمع اوره، ترک‌بندی‌ها و اندور، اسید، و

هیپوئیک، اسیدهای آمینه‌ای مختلف، اسیدهای فنولی و

\(\text{Ns;} \) 8P = S Z

\(\text{La: Latency} \hspace{1cm} \text{Am: Amplitude} \hspace{1cm} \text{R: Right} \hspace{1cm} \text{L: Left} \hspace{1cm} \text{Dis: Distal} \hspace{1cm} \text{S: Sensory} \hspace{1cm} \text{M: Motor} \hspace{1cm} \text{ms:}\) میلی ثانیه، \(\text{m/s:}\) متر ثانیه‌ای

\(158 \hspace{1cm} \text{دسته‌های دوش دوم، نسبت‌های دریافتی ۱۳۸۹} \)

\(158 \hspace{1cm} \text{تاریخ} \hspace{1cm} \text{به‌پژوهش دانشگاه علوم پزشکی اردبیل} \)

\(158 \hspace{1cm} \text{سیرپیام‌ها} \hspace{1cm} \text{یکمانی} \hspace{1cm} \text{به‌پژوهش دانشگاه علوم پزشکی اردبیل} \)

\(158 \hspace{1cm} \text{سیرپیام‌ها} \hspace{1cm} \text{یکمانی} \hspace{1cm} \text{به‌پژوهش دانشگاه علوم پزشکی اردبیل} \)
<table>
<thead>
<tr>
<th>جدول ۳: میانگین اختلاف و اختلاف منجر به اعصاب در دوره مکمل درگروه ۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص‌ها</td>
</tr>
<tr>
<td>اختلاف</td>
</tr>
<tr>
<td>Tibialis.Dis.R.M.La(ms)</td>
</tr>
<tr>
<td>Tibialis.Dis.R.M.Am(mv)</td>
</tr>
<tr>
<td>Proximal.M. NCV(m/s)</td>
</tr>
<tr>
<td>Eye.R.La(ms)</td>
</tr>
<tr>
<td>Eye.R.Am (HV)</td>
</tr>
<tr>
<td>Medianus.Dis.R.M.La(ms)</td>
</tr>
<tr>
<td>Medianus.Dis.R.M.Am(mv)</td>
</tr>
<tr>
<td>Medianus.Dis.R.S.La(ms)</td>
</tr>
<tr>
<td>Medianus.Dis.R.S.Am (HV)</td>
</tr>
<tr>
<td>Medianus.Dis.R.S.NCV(m/s)</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.La(ms)</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.Am (HV)</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.NCV(m/s)</td>
</tr>
<tr>
<td>Medianus.Dis.R.S.La(ms)</td>
</tr>
<tr>
<td>Medianus.Dis.R.S.Am (HV)</td>
</tr>
<tr>
<td>Medianus.Dis.R.S.NCV(m/s)</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.La(ms)</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.Am (HV)</td>
</tr>
<tr>
<td>Medianus.Dis.L.S.NCV(m/s)</td>
</tr>
<tr>
<td>Ulnaris.R.S.La(m/s)</td>
</tr>
</tbody>
</table>

L.A: Latency, A.M: Amplitude, R: Right, L: Left, D: Distal, S: Sensory, M: Motor

میوانیتول، سولفانا، فسفات آنزیمی و موتکولایپاس متوسط گزارش شده است [۱۶]. همچنین میانگین اختلاف و اختلاف منجر به اعصاب در دوره مکمل درگروه ۱ نشان می‌دهد که افزایش کلسم در مراحل اول میزان افزایش کلسم در مراحل اول دیابتی می‌باشد.

میزان میانگین اختلاف و اختلاف منجر به اعصاب در دوره مکمل درگروه ۱ نشان می‌دهد که افزایش کلسم در مراحل اول میزان افزایش کلسم در مراحل اول دیابتی می‌باشد.
در این ارتباط می‌توان و همکاران اعلام کردند که در بیماران ESRD، افراد اورومی دیابتی در مقایسه با افراد غیر دیابتی، نوروبیالی محسوب شدیدتری داشتند [21]. برخی مطالعات گویای این امر که در جدول‌های میانگین‌ها و اخلاق‌نگری می‌باشد و در جدول می‌باشد.

جدول ۱: میانگین‌ها و اختلاف‌نگری‌های اعصاب در دورهٔ مکمل در گروه ۲

<table>
<thead>
<tr>
<th>پاشونی</th>
<th>اختلاف (روزنامه)</th>
<th>شروع (روزنامه)</th>
<th>منفی‌نگری‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/31±1/7/9</td>
<td>5/1/7/7/8/3</td>
<td>5/1/7/7/8/3</td>
<td>Proximal.M.NCV(m/s)</td>
</tr>
<tr>
<td>≤6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Eye.R.La(ms)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Eye.R.Am(IV)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Suralis.Dis.R.S.La(ms)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Medianus.Dis.R.S.La(ms)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Medianus.Dis.R.S.Am(IV)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Medianus.Dis.R.S.NCV(m/s)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Medianus.Dis.L.S.La(ms)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Medianus.Dis.L.S.Am(IV)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Medianus.Dis.L.S.NCV(m/s)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Ulnaris.R.S.La(ms)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Ulnaris.R.S.Am(IV)</td>
</tr>
<tr>
<td>≥6/1/7/9</td>
<td>1/6/7/7/6/3</td>
<td>1/6/7/7/6/3</td>
<td>Ulnaris.R.S.NCV(m/s)</td>
</tr>
</tbody>
</table>

3 Mitz
2 End stage renal disease

در استرس اکسیدانی مرتبت با دیابت، افزایش اکسیداسیون LDL جریان بالاتری که باعث شدن به هیپرسسیمی در تنسورپاتی موجب کاهش عصب کاهش یافته و با کاهش جریان خون آن بوده‌است. شده که در دو پیش‌ساز تنسورپاتی هستند.

جدول 5: میانگین انحراف معیار و اختلاف معیارهای اعصاب در دوره داروپردازی در گروه 2

<table>
<thead>
<tr>
<th>P</th>
<th>اختلاف</th>
<th>شرکت (وزن 18)</th>
<th>متغیرها</th>
</tr>
</thead>
<tbody>
<tr>
<td><1/10</td>
<td>0.24±0.44</td>
<td>0.23±0.73</td>
<td>Tibialis.Dis.R.M.La(m/s)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.29±0.44</td>
<td>0.27±0.44</td>
<td>Tibialis.Dis.R.M.Am(mv)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Proximal.M. NCV(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.18±0.44</td>
<td>0.17±0.44</td>
<td>Eye.R.La(m/s)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Eye.L.Am (IV)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Medianus.Dis.R.M.La(m/s)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Medianus.Dis.R.M.Am(mv)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Medianus.Dis.R.S.La(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Medianus.Dis.R.S.Am (IV)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Medianus.Dis.R.S.NCV(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Medianus.Dis.L.S.La(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Medianus.Dis.L.S.Am (IV)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Medianus.Dis.L.S.NCV(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Medianus.Dis.L.S.La(m/s)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Medianus.Dis.L.S.Am (IV)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Medianus.Dis.L.S.NCV(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Ulnaris.R.S.La(m/s)</td>
</tr>
<tr>
<td>Ns</td>
<td>0.20±0.49</td>
<td>0.19±0.49</td>
<td>Ulnaris.R.S.Am (IV)</td>
</tr>
<tr>
<td><1/10</td>
<td>0.22±0.44</td>
<td>0.20±0.44</td>
<td>Ulnaris.R.S.NCV(m/s)</td>
</tr>
</tbody>
</table>

Ns: عدم تغییرات معنی‌داری.
در مقاله علمی پژوهش‌دهنده علمور اردبیلی

(1) از آنجاییکه در طی ۳ ماه مطالعه عملکرد بسیاری از اعصاب کاهش نشان داد این امر می‌تواند نشانگر آسیب شدید و پیشروند به اعصاب باشد. البته نظر می‌رسد قسمتی از این افت فعالیت بطور کوتاه مدت و ناشی از تجمع ترکیبات باشد که بروی هدایت عصبی اثر ناگهانی دارد و قسمت دیگری از کاهش فعالیت ناشی از اثرات درازمدت. به‌عنوان ناشی از آسیب ساکلاتهایی به منورون باشد.

(2) تجویز روز باعث بهبود عملکرد بسیاری از اعصاب گردیده. احتمالاً سبب ممکن از این بهبود بطور کوتاه مدت و با کاهش عوامل مزاحم در هدایت عصبی باشد و قسمت دیگری از بهبود عملکرد اعصاب ممکن است مرتبه به ترکیب ساکلاتهایی نورون باشد. بنظر میرسد برای ترمیم کامل آسیب‌های شدید ساکلاتهایی سلول‌هایی بازمانده در بیش از ۳ ماه نیاز است.

پژوهش‌های مختلفی اثربخشی تجویز روز را بر عملکرد اعصاب مطالعه کرده و علائمی از آن می‌تواند داشته باشد که این اثرات ممکن است مرتبط با تغییرات فیزیولوژیک در نوری و در مواردی ممکن است این اثرات مشاهده شده از طریق چه مکانیسمی قابل تشخیص است و ارتباط عوامل دیگر دچار در نوری و میزان دیگر که ناشی از معیارهای مطالعه است.

نتیجه‌گیری

در میزان تحت دیالیز مزمن:

1- کاهش عملکرد اعصاب بطور پیشروندی صورت می‌گیرد.

2- تجویز روز سبب بهبود عملکرد اعصاب می‌شود.

تشکر و قدردانی

به دوستان و مهندسین و کارکنان آزمایشگاه بیش نورولوژی بیمارستان امام خمینی تبریز و نیز از کارکنان و بیماران محترم بخش دیالیز بیمارستان سینا تبریز صمیمانه تشکر و قدردانی می‌شود.

1 Sprenger
2 Gupta
3 Unal
References
8- Skarupskiene I, Kuzminsik V, Abdrachmanovas O, Ryselis S, Smalinskiene A. Zinc and aluminum concentrations in blood of hemodialysis patients and its impact on the frequency of infections. Medicina (Kaunas). 2005; 41; (suppl;1): 65-68.
The Effect of Zinc Supplementation on Nerve conduction Velocity in Chronic Hemodialysis Patients

Mazani M, PhD ¹; Iremlou H ², MD; Argani H, MD ³

1-Corresponding author: Assistant Professor of biochemistry, Department of Biochemistry, Ardabil University of Medical Science, Ardabil, Iran. E-Mail: m.mazani@arums.ac.ir
2- Assistant Professor of Neurology, Department of Neurology, Tabriz University of Medical Science.
3-Associate Professor of Internal Medicine, Division of Nephrology, Modarres Hospital, Shahid Beheshti University of Medical Science.

ABSTRACT

Background and Objectives: Neuropathy is a common complication in hemodialysis patients. The purpose of this investigation is examination of the effect of zinc supplementation on nerve conduction velocity in chronic hemodialysis patients.

Methods: In this clinical trial 65 chronic hemodialysis patients were studied in two groups: Group one (35 patients) received 100 mg placebo (corn starch) and group two (30 patients) received 100 mg elemental zinc (as zinc sulfate) daily for 2 months. The placebo and supplement discontinued in the next 2 months. Then, the study continued for two other months in the cross-over form; group one received 100 mg zinc and group two received 100 mg placebo daily for 2 months. The function of central and peripheral nerves were evaluated at the 0th, 60th, 120th, 180th days by nerve conduction velocity of electrodiagnostic test.

Results: The function of nerves didn't change significantly or some parameters markedly decreased in placebo period in both groups. Significant increase was found in the function of nerves during zinc supplementation period in both groups.

Conclusion: These data indicate that zinc supplementation improve neuron function in patients undergoing hemodialysis

Key Words: Zinc; Hemodialysis; Neuropathy; Nerve conduction velocity